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FOREWARD

The development of methods for effectively computing the trajectories
of artificial satellites in the actual field of the Earth is one of today's
chief technical problems. There have probably been dozens of studies de-
voted to this subject. In this book, some of these methods are analyzed,
described and compared. We have also included research done along these
lines by the workers at the Computing Center of the Academy of Sciences
of the USSR. This monograph is the collective work of Yu. G. Yevtushenko
(812 and Appendices V111 and X), I. A. Krylov (§15), R. F. Merzhanova
(513, 514) and G. V. Samoylovich, who wrote the remaining sections of the
book.

Appendix V11 was written by G. V. Samoylovich and Yu. G. Yevtushenko,
and all of the authors of the book contributed to compilation of §16
(comparative analysis). Most of the calculations were handled by R. F.
Merhanova. Yu. G. Yevtushenko and I. A. Krylov also took part in pro-
gramming and carrying out computations. The book also takes up a number
of auxiliary problems relating to the nature of the Earth's potential
with a systematic exposition of the given subject.

The work may be used as a reference and a textbook.

N. N. Moiseyev



FROM THE AUTHORS
../i*

The actual motion of artificial celestial bodies differs from that
given by Kepler's laws due to the effect of various disturbing factors.
This book is devoted to quantitative and qualitative analysis of motion
which is affected by the most appreciable (at moderate distances from the
Earth) of these factors--the eccentricity of the Earth's gravitational
field. These problems are taken up primarily in the first two chapters.
The third chapter contains an outline of several algorithms which employ
analytical relations to describe the motion of artificial satellites in
the gravitational field of the aspherical Earth. This chapter puts several
methods at the reader's disposal, from which he may select the one which
best suits the practical problem to be solved. The fourth and £inal chap-
ter contains several examples illustrating application of the material
given in preceding sections.

The authors started out with the goal of writing a book which would
be of use to practioners: engineers and scientific collaborators involved
to some extent in studying and computing the motion of artificial Earth
satellites. This goal influenced the selection of material, manner of
exposition and structure of the book. More specifically, an attempt was
made to present the basic material, comprising nineteen chapters, as
simply as possible (but with sufficient rigor) without losing sight of the
chief purpose--practical application.

The appendices to the chapters contain derivations of the relation-
ships and proofs of some of the facts cited in the main text, some aux-
iliary theoretical data, and also the values of a number of constants
needed in.practical calculations.

Thus, the basic material is sufficient for a first acquaintance
with the problems treated in this book. The appendices should be used
for a deeper study of the pertinent sectionms.

In completing this work, the authors received assistance and advice
from Professor N. N. Moiseyev, who instigated both the writing of this
book as well as the entire series 'Mathematical Methods in the Dynamics /6
of Space Vehicles'". We were assisted by Ye. P. Aksenov and A. A. Orlov
in starting and programming the algorithms given in §15 and 14 on a
digital computer. A great deal of constructive criticism during reading
of the manuscript was rendered by O. A. Chembrovskiy and L. P. Pellinen,
resulting specifically in improvement of the first chapter. V. N. Lavrik
handled the set of computations given in the second chapter as well as
programming of the corresponding problems on a digital computer. A. F.

*Numbers in the margin indicate pagination in the foreign text.
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Shutkina meticulously handled a great quantity of graphic material. The
authors give their sincere thanks to all these comrades.

"Having experienced the torment of  [7
thirst, I endeavoured to dig a well
that others might draw from."

E., Se ton—Thompéon

vii



FOLD LINE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION POSTAGE, AND FEES PAID
WASHINGTON, D.C. 20546 . NATIONAL AERONAUTICS & SPACE ADMINISTRATION

OFFICIAL BUSINESS

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
CODE USS-T
WASHINGTON, D.C. 20546

NASA TTF No.
539

CUT ALONG THIS LINE

FOLD LINE

‘ll



" NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Budget Bureau No. 104-R037

TECHNICAL TRANSLATION EVALUATION

To: NASA TTF NO.

THE USERS OF THIS TRANSLATION =

539

MAINTAINING THE QUALITY OF NASA TRANSLATIONS REQUIRES A CONTINUOUS EVALUATION PROGRAM. PLEASE
COMPLETE AND MAIL THIS FORM TO AID IN THE EVALUATION OF THE USEFULNESS AND QUALITY OF THE
TRANSLATING SERVICE.

THIS PUBLICATION (Check one or more)
D FURNISHED VALUABLE NEW DATA OR A NEW APPROACH TO RESEARCH.

[ ] VERIFIED INFORMATION AVAILABLE FROM OTHER SOURCES.

D FURNISHED INTERESTING BACKGROUND INFORMATION,

[] OTHER (Explain):

FOLD LINE FOLD LINE

TRANSLATION TEXT (Check one)

[T ]11S TECHNICALLY ACCURATE

[T]1S SUFFICIENTLY ACCURATE FOR OUR PURPOSE.
[T']1s SATISFACTORY, BUT CONTAINS MINOR ERRORS.

[ ]15s UNSATISFACTORY BECAUSE OF (Check one or more):

[T | POOR TERMINOLOGY. {1 NUMERICAL INACCURACIES.
[]INCOMPLETE TRANSLATION. [ |ILLEGIBLE SYMBOLS, TABULATIONS,
OR CURVES.
[ ] OTHER (Explain):
FOLD LINE FOLD LINE
REMARKS
FROM DATE

NOTE: REMOVE THiIS SHEET FROM THE PUBLICATION, FOLD AS INDICATED, STAPLE OR TAPE, ANDMAIL.
NO POSTAGE NECESSARY.

NASA Form 1332 AucG 66 GPO 915-777

Approval Expires: Sept. 30, 1969 P

CUT ALONG THIS LINE

CUT ALONG THIS LINE



Introduction

The equation for an artificial Earth satellite in a central gravita-
tional field (the field of a material point or a uniform sphere) takes the
form

I TR (0.1) /9

-) . - -
where r is the radius vector for the center of gravity of the satellite; t

is the time; k2 is the constant of attraction or the gravitationai constant;
M is the mass of the attracting body or the central mass.

The quantity K is equal to the proportionality factor f in expression

(2.1) given below. In the CGS system, f = 6.67-10°° e -g‘l .sec?.

The physical meaning of the constant k2 = f is evident from formula
(2.1). 1t is the acceleration toward the central mass which is acquired by

a body of unit mass separated by a unit of distance!.

The motion of artificial Earth satellites calculated by law (0.1) is
considered by S.S. Tokmalayeva?. The actual motion of satellites and space
vehicles never takes place under the effect of a central force. This /10
motion is described by an equation which may be written in the form

a*1/dt® = F 4R (0.2)

and is called the equation of disturbed motion.

The name is purely arbitrary and assumes that the basic force which
determines the motion is central, that all remaining forces are small in
comparison with the basic force, and that the motions described by equations
(0.1) and (0.2) are close to one another.

This last condition is useful not only for writing equations of motion

1 If we take as units of mass, time, and distance respectively the mass of

the sun, the mean solar day,and the semi-major axis of the Earth's orbit (the
so-called astronomical unit of distance),then,k2 is called the Gauss constant.
According to Gauss's computations, k = 0.01720209895. Modern data give
k = 0.01720209842. The value computed by Gauss is taken as the constant for
greater convenience, but a correction is introduced in the value of the semi-
major axis of the Earth's orbit, considering it equal to a = 1.00000003, or
log a = 0.0000000013. The quantity k2 may be equal to unity if the unit of
time is taken as equal to k-l = 58.132441 mean solar days.

2 5, S. Tokmalayeva's paper will be published in this same series.



in a form which is convenient for study (equations in oscillating elements,
see [1-3], but also for finding analytical (see for instance §l1 of this
book) or numerical solutions (for instance in the Encke method [1]).

The function R is a perturbation or disturbing force (or function)
[1, 2]. The form of the perturbation functions, which may be either of
'matural" origin or associated with intentional human actions (a force which
controls motion), depends on the physical scheme of the problem.

In this book, which is the second in the series '"Mathematical Methods
in the Dynamics of Space Vehicles," we shall take up uncontrolled (ballistic)
motion of a space vehicle or artificial satellite in the central gravitation-
al field of the Earth. The investigation of this motion takes on added
significance in connection with planning and determining the orbits of space
craft (4). The pertinent equations (of form (0.2)) may be solved (without
using numerical integration)only for special forms of the disturbing function
and in a specially selected coordinate systeml. Some methods for describing
the motion of artificial satellites in an eccentric field of terrestrial
attraction are considered in the third chapter. However, as a preliminary
step, the nature of such trajectories is analyzed and brief consideration is
given to the various forces which disturb the Keplerian orbits of artificial

Earth satellites.

1 Equations (0.1) may be integrated in closed form with the use of the
first integrals (See [1-3]).



"The Earth is not at all an el-
lipsoid of revolution, but rather
shows a wavelike deviation from the
ellipsoid which describes it as a
whole. "

K. F. Gauss

Chapter One
THE FORCE FIELD AND SHAPE OF THE EARTH
§1. The Forces Which Act on an Artificial Earth Satellite

The motion of an uncontrolled space vehicle under the effect of a
central attractive force alone takes place in a bounded region and conforms
to Kepler's laws, assuming that the inequality

V2 < 2u/r

is satisfied at each point of the trajectory, where V is the absolute velo-

city of the vehicle, r is the distance from the vehicle to the center of the
attracting mass, and u is the product of the gravitational constant and the
mass of the attracting body (see §2).

In reality, the trajectory of such a vehicle is affected, not only by
the central gravitational force, but also by disturbing effects which cause
the motion to deviate from Keplerian motion. The disturbing forces differ
in value, and the principal forces may be isolated for further analysis.
These disturbing factors are the eccentricity of the gravitational field,
the effect of the ambient medium, the effect of pressure from solar radia-
tion, the effect of magnetic fields, and the relativistic effect.

Let us examine the nature and magnitude of these effects individually.
Effect of the Eccentricity of the Gravitational Field

The eccentricity of the gravitational field in which an artificial
Earth satellite or any other space vehicle moves is due to the effect of the
gravitational fjelds of other heavenly bodies and the eccentricity of the

/11

~
—
N

1

Earth's field itself. The effect of eccentricity in the Earth's gravitational

field will be analyzed in more detail later on. For now we shall examine
disturbances due to the effect of the moon and sun, since theirs are the
only effects out of the entire set of heavenly bodies which can be satis-
factorily examined.



The accelerations which correspond to the effect of these forces (in
an inertial geocentric coordinate system) are defined by the following
equations:

X X x x )

. KS TS KL TL

x=fmsﬁ——;-§— +me;—-3—'—;'§- s
KS TS KL TL

- Yks s Ykr L

Vo= fmg 55 - ey -
ks rs kL 71 (1.1)
z z F4 z

5 kS _%rs KL _*TL

z = fmg 57 - 3= e fmp |- o
KS TS KL TL

where mg is the relative mass of the sun with respect to the Earth (mS =

6
= 0.0332448-107); p; is the relative mass of the moon (mj, = 0.0122888). The

subscripts are: K = artificial Earth satellite, S = sun, L = moon. T =
Earth.

These disturbances result in rotation (so-called precession) of the
plane of motion of the satellite with respect to the pole of the ecliptic

with angular velocities QS and QL, and also change the modulus of the focal

radius for the orbit of the artificial satellite (Srg and éry).

The following estimates may be given for the functions &r and Q. For
a circular orbit 800 km from the Earth (for a single revolution):

ars max = 25,6 cm;

5rL max = 57,6 cm.

The total deflection due to the effects of sun and moon on a single
revolution

5’[,,5 < 83 cm.

Under the same conditions, an artificial Earth satellite in a "24-hour" /13
orbit (6.61 Earth radii) is subjected to the disturbances:



The rate of motion of the ascending node with respect to the pole of
the ecliptic is equal to

2, =0,63-10"0sec -1,
Qg = 0,28- 10" 0sec —1,

and with respect to the pole of the Earth

2, g = 0,835:10710 sec1,

For artificial satellites located in a '"24-hour" orbit, the precession
of the plane with respect to the planet's pole is equal to

g = 4,05-10710 sec ~1;
Gy = 10,2+10710 sec™!;
s’zL.S< 14-10 10 sec™t,

It may be pointed out for comparison that precession of the plane of
the orbit due to the first degree of polar flattening of the Earth (See § 5)
is twice as great in this case

Qp < 30-10710 sec™!,
According to data [5], the precession of the orbital plane with respect

to the pole of the ecliptic depends on the length of the semi-major axis of
the orbit as follows:

QT"'a 3
G, ~ a%.



Thus, éT = éL at a distance equal to somewhat more than seven Earth

radii.

The disturbing effect of the moon (and in the general case, of any
celestial body) in certain cases may considerably alter the pattern of
motion of the artificial Earth satellite. Interesting results along these
lines were obtained by M. L. Lidov [6], the most important of which re-
lates to the fact that the lifetime of the satellite and that of the
disturbing body. At the distance mentioned above (about 7 Earth radii},
this effect can no longer be disregarded in computations. For instance, /14
according to J. Kozai's computations [7], the disturbing effect of the moon
shortened the litetime of satellite 1959 62 "Explorer Vi, by a factor of

more than 10 (orbital parameters: a, = 43,.446 km, e = 0.7604, iO = 47°,10).
Actual determination of the orbital evolution of satellite 1958 B, (para-
meters: altitude above the Earth's surface at apogee hA = 3,948 km, altitude

at perigee h; = 658 km, io = 34°.3, ey, = 0.19, Keplerian period of rotation

TK = 134m.18, weight G - 2 kg), '"Vanguard 1', due to the disturbing effect

of the sun,showed the following values: éS = 0.18°/yr, Grs = 56.6 cm. The

effect of the moon on the orbital evolution was 2.2 times as great.

Thus, if we disregard the disturbing effect of the moon and the sun
when considering artificial satellites moving over a period of several days
at a moderate distance from the Earth (3-4 thousand km above the surface),
we introduce an error of several hundred meters in the position of these

satellites,

For satellites with an apogee at about 40,000 km over this same time
period, the error reaches several dozen kilometers (this error is due
chiefly to inaccuracy in locating the plane of the orbit; the error due to
inaccuracy in determining the focal radius is only about one kilometer).

Effect of the Ambient Medium

As distinct from the conservativel effect of the masses of the moon

1A mechanical system in which the total encrgy remains constant is called
conservative. If the potential energy of the system u depends only on the
coordinates (e.g., X, y, z), then the forces in the conservative system are
defined in the form Fx = -3u/o5x, Fy = -du/oy, FZ = -3u/3z (this condition is

necessary and sufficient). In contrast to the conservative system, the total
mechanical energy decreases continuously in the dissipative system with con-
version to other forms of energy (chiefly thermal).




and sun, the ambient medium has a dissipative effect on satellite motion.
The energy of the moving body and its altitude above the Earth decrease con-
tinually and the satellite, as it enters the dense .layers of the atmosphere,
goes into a steep descent trajectory. The braking effect of the atmosphere
is characterized by the deceleration of the body, which may be computed from
the well-known formula

2o

e 2
= — V .
A=—BeVor VreL (1.2)

Here, the notation V = the velocity of the satellite with respect to the

REL

atmosphere; is the unit vector of relative velocity; p is the mass den-

>0
VREL
sity of the atmosphere; B = CXS/Zm is the ballistic coefficient of the satel- /1
lite; Cx is the aerodynamic drag coefficient which depends on the shape of
the body and the flow conditions; S is a characteristic area (e.g. the middle
cross-sectional area) to which the coefficient C g reduced; m is the mass
of the body. x

The coefficient of aerodynamic drag of a satellite depends on a number
of factors (the geometric shape of the object, its orientation with respect
to the vector of relative velocity, atmospheric temperature, conditions of
interaction between the molecules and atoms of the upper atmosphere and the
surface of the object, etc.). At present, the value of CX may be reliably

determined only for bodies of the simplest geometric shape. More specifi-
cally, conical and convex bodies have a drag coefficient equal to CX':

~ 1.7 - 2.1 [8]!

The ballistic coefficient is a comprehensive aerodynamic character-
istic for space vehicles moving in the upper layers of the atmosphere.

Unfortunately, not only is the value of B uncertain, but so is the

1 Since flow around bodies at altitudes of more than 150 - 200 km takes
place in the free-molecular state, diffuse reflection is the most probable
mechanism of interaction between the atmosphere and the body. The Newtonian
theory based on this premise may be used for computing the value of Cx’ which

is equal to two and is independent of the shape of the body. More accurate
methods of determining coefficients of aerodynamic drag (e.g. [8]) show
some deviation from this value.




density o of the upper atmospherel. We shall not take up this problem in

detail (of the new works in this area see for instance [11]); it is suf- /16
ficient to state that the variations in density which depend on the diurnal
rotation of the Earth reach 100% [12]; the same magnitude of fluctuation in
density (with a period of fluctuation of less than half a day) may result

from a change in solar activity. Besides, the change in density depends on

the annual rotation of the Earth and the geographic latitude of the locality.

Since the relationship between the parameters of the upper atmosphere
and solar activity is not presently known with sufficient accuracy, and we
cannot reliably predict the change in p as a function of other parameters,
the density of the upper atmosphere is actually a random function of many
variables. The effect of random changes in p, on the accuracy of determin-
ing satellite motion may be estimated, if only by comparing the results of
computations for various models of the atmosphere.

Let us cite some computational results in order to give an idea of the
magnitude of disturbances due to the atmosphere?.

For a circular satellite (at a distance of 225 km), the change in
longitude of the ascending node and the inclination of the orbit reach the
following values in a 24-hour period:

AR = 1", A¢ = 10",

In this and subsequent examples, we have used S. K. Mitra's model of
the atmosphere [18] corrected somewhat to bring it into conformity with the
latest data.

For a satellite with initial eccentricity ey = 0.0499 (hA = 1,000 km,

hH = 300 km), these quantities remain practically constant over a period of

T Since the atmosphere rotates with the earth, the artificial satellite is
affected not only by the dissipative force in the plane of the orbit, but by
a disturbing force normal to the plane which causes a change in the longi-
tude of the descending node and the inclination. For instance, as is shown‘
in [9] and [10], the rotation of the atmosphere caused a secular variation in
the orbital inclination of satellite 1957 g "Sputnik 2'" by 4+10-4 deg/day (by
calculations) or 1:10°3 deg/day (actual). We shall consider only a non-

rotating atmosphere in this section. . .
2 0f the works on determining the effect of atmospheric drag on satellite

motion, we should mention the articles by D. Ye. Okhotsimskiy, T. M. Eneyev
and G. P. Taratynova [13], G. P. Taratynova [14, 15] and P. Ye. El'yasberg

[16, 17].



several days. Changes in the geometric dimensions of a circular orbit (h=250
km) due to the effect of the atmosphere become comparable after only ten
revolutions with disturbance due to first-order polar flattening of the

Earth (i.e. they are equal to approximately 20 km). For an elliptical orbit
(hA = 1,000 km, hH = 300 km), the change over this same interval is no great-

er than 0.5 km.

There is a more appreciable reduction in the draconic period of revo-
lution of the satellite TQI. For the given circular and elliptical satel-

lites, these changes are equal to 110 and 3 sec respectively By the end of
the tenth revolution.

Thus, the ambient medium is an appreciable factor which affects the
motion of artificial Earth satellites in the range of altitudes below 300 km
from the surface of the Earth. In many instances (especially when studying
motion over a comparatively long time interval) this effect must be taken
into account. Naturally, all problems associated with satellite lifetime
are due in the final analysis to the effect of the atmosphere. However, in
the general case, the necessity for accounting for the effect of the atmosph-
ere depends on the specific formulation and initial conditions of each given
problem.

Effect of Magnetic Fields. The Relativistic Effect

The electrical systems installed in satellites and the magnetic field
induced by these systems make the motion of the satellite sensitive to the
Earth's magnetic field and to the local random variations in this field.
There has not been sufficient research on the problem of interaction between
the Earth's magnetic field and those of the satellites (V. V. Beletskiy's
paper [20] takes up the effect which this factor has on satellite motion
with respect to the center of gravity); however, it may be assumed that the
effect of this interaction will be several times less than that of the upper
atmosphere at moderate distances from the Earth (700 - 3,000 km).

Since the effects associated with the theory of relativity become
appreciable when an object is moving close to the speed of light, it may be
assumed ahead of time that the relativistic effect has only a slight influ-
ence on the motion of an artificial Earth satellite over a comparatively
short time interval. However, let us examine this effect in more detail for
the sake of generality in our analysis.

The relativistic effect in determination of artificial satellite
motion is associated with the fact that the trajectory of a satellite (writ-
ing out the equations of motion, giving the initial conditions) is determined
by methods which are now well-known in inertial Galilean space. Actually,
according to the general theory of relativity, any coordinate system which is

1 The draconic period is defined as the interval of time between two suc-
cessive transits of the satellite through an ascending node [19].




inertial from the standpoint of Newtonian mechanics, will be disturbed in
the presence of gravitational fields, i.e. it will no longer be Galilean.
In other words, geometric space is curved by the presence of gravitating
bodies.

The gravitational fields of the karth and sun cause continual rotation /18
of the line of apsides of the satellite orbit in the direction of its motion.

This effect is proportional to the ratio VZ/C2 (V is the velocity of the

satellite in the gravitational field, C is the speed of light in vacuum).
In addition to motion of the line of apsides, the gravitational effect of
the sun also causes a shift in the line of nodes [21, 22].

According to [21], the shift in the perigee of the orbit of a heavenly
body (in seconds of arc per century) due to the gravitational effect of the
Earth may be determined from the formula

1
sy = 1,74:10%/a% (1-¢?)

(a is measured in centimeters). The shift in the perigee due to the gravi-
tational effect of the sun (Aw,) for nearby objects in space is equal on the

average to 1".9 per century.

The shift in the line of nodes (in seconds of arc per century) due to
the gravitational effect of the sun may be determined from the formula

89 = 1,67-10%3/0% (1-¢2).

Shown in Table 1 below [21] is the shift in the line of apsides of
artificial satellite orbits (in seconds of arc per year) as a function of
their distance from the center of the Earth (effect of the gravitational
field of the Earth alone).

TABLE 1
Average Distance to Orbital Eccen- Shift in the Line of
Center of the Earth, cm tricity, e Apsides, Aw]
I=I Earth = 6,367+108 0 17,
I=I Earth +4:107=8,77.108 0,01 147 .5
r=10-108 0,25 57,886

Tr. note: Commas indicate decimal points.
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A second relativistic effect in the motion of satellites is displace-
ment of the line of apsides caused by the rotation of gravitating bodies (the
Earth and sun)!. The effect of rotation of the Earth and sun may be one or
two orders of magnitude less than the relativistic effect which takes place
in the absence of rotation. Both these effects add up algebraically, and
accounting for the rotation of Earth and sun reduces the overall relati-
vistic effect.

The equations of motion for artificial Earth satellites may be derived
within the framework of relativistic mechanics. However, these equations
cannot be justifiably used at present in view of their complexity and the
comparatively slight deviation in the motion which they describe as compared /19
with motion in Galilean space. A. F. Bogorodskiy in particular [23] has
derived equations of motion for artificial satellites with regard to the
relativistic effects due to the uniformly rotating, homogeneous, sphereical
Earth. In this same paper he determined the relativistic secular variations
in the orbital elements of equatorial and polar circular satellites.
According to his results, the drift in the line of apsides for an equatorial
satellite is independent of the Earth's rotation, while the drift in the
line of nodes for a polar satellite (extremely low in value, equal to only
a few tenths of a second of arc per year) depends only on the Earth's
rotation.

The figures given above show that the effect of the magnetic field and
the relativistic effect are extremely small and may be disregarded in most
problems on the motion of artificial Earth satellites.

Effect of Solar Radiation

The solar radiation factor, i.e. the pressure from solar rays, has an
appreciable disturbing effect on the motion of space vehicles in which the
ratio of cross-sectional area S to weight G is sufficiently large, viz:

S/G > 25 cm2/ gram.

A sufficiently strict computation of this effect is complicated by the fact
that the vehicle spends part of the time in the Earth's shadow. Calcula-
tions are still more complicated for satellites which move in elliptical
orbits [24, 25, 26].

Disturbances due to scolar radiation in the case where the satellite is
illuminated by the sun or completely eclipsed by the Earth have been studied
specifically in [27]. The disturbing force in this instance (if we disre-
gard parallax, which is equal to 11' at a distance of 1,600 km from the
Earth) is equal to

1 Accordiﬁgrtbithé gehefélrthébry Equélgtivit};rfﬂg;}afation of a gravi- /18
tating body affects its gravitational field.

11



-
F-Frg,
+
where rg is the basis vector for direction toward the sun; F = yvpS; S is

the effective cross-section of the satellite with respect to the direction
of ;§$ p is the pressure of solar radiation close to the Earth (this quantity
is equal to approximately (4.5—10)-10-5 dyne/cmz); y is a coefficient which /20

depends on the reflecting properties of the satellite surface; v is a coef-
ficient which is equal to unity if the satellite is illuminated by the sun,
and equal to zero if it is in the Earth's shadow.

Disturbances in the satellite trajectory due to solar radiation are
given quite detailed consideration [28], where the effect of eclipsing of
the satellite is also discussed as well as resonance problems (see below).

The pressure of solar rays on an artificial satellite moving in a
circular orbit leads to a displacement of the center of the orbit (see for
instance [29].). As a result, the distance between satellite and Earth is
reduced in that part of its trajectory where it is moving away from the sun.

By way of example, we could point out that if the sun had been in the
orbital plane of satellite 1960 ,; "Echo-1" (orbital parameters: hA = 1,750

km, hH = 1,633 km, the period of the revolution T = 121m.6, S/G = 125 cmz/g

immediately after placement in orbit), then the geometric center of the
orbit would have been shifted by approximately 7 km per day. Actually
(io = 47°), the rate of the shift was 2-3 km/day according to data [30].

By comparing the disturbances due to the effect of solar radiation
and the Earth's atmosphere, it was found [27] that the first effect pre-
dominates at altitudes of more than 900 km, while the second is predominant
at lower altitudes,

At certain inclinations (depending on the radius of the orbit), the
pressure of solar rays may induce resonance phenomena (see for instance
[24], 28, 29]). 1In this case, the orbital elements vary in such a way that
the perigee is always turned toward the sun. The altitude of the orbit's
perigee is reduced by resonance effects, and the lifetime of an artificial
satellite (before entering the denser layers of the atmosphere) may be
reduced by a factor measured in the dozens. For the '"Echo 1' satellite in
particular, this 'resonance' inclination is equal to 30°.

Thus, the phenomenon of solar radiation should be taken into consider-
ation in studying the motion of satellites with a ratio S/G > 25 cmz/gram

12



over a long time intervall.

The eccentricity of the Earth's gravitational field has a considerably /21

stronger disturbing effect than the factors considered above. The following
sections are devoted to an investigation of this effect on the motion of

artificial Earth satellites.

§2. The Earth's Gravitational Field

Let us assume that a point mass m is located at the point (xo, Yor ZO)
of an inertial rectangular coordinate system (x, y, z) with basis vectors

> g . R . . .
(i, 7, k). According to the law of universal gravitation, the force with
which this mass acts on a unit mass at a distance

r=x :1—072: (y-y0) 2+ (z -24)% is equal to

mn

F--
I

|-y

’ (2.1)

where f is the gravitational constant (the constant of gravity or éttraction)
whose value depends on the chosen system of units (see Introduction).

In addition to (2.1), let us consider the function

V=fm/r, (2.2)

Taking the gradient of this function, we get

29V 79V 7oV
gredV = l»a—;+jé~y—+haz =

— - - - 2—2Z,.\ »
B

gradV = F, (2.3)

1 Kﬁﬁaféht1y‘EHé'HEViafiaﬁ”ih“Ehe"AbEhal pdéition of the perigee for the
"Vanguard 1" from thS theoretical data (the %arameters of its orbit are %iven
above, S/G = 0.14 cm4/gram) is explained by the fact that the pressure o
solar rays was not taken into consideration in the computations.
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where F is a force which is defined in the given case by equation (2.1).

The function V which satisfies equation (2.3) is cglled a force
function. We shall also call it the potential of force F or the potential
of force field F without making any distinction between these terms. The
attractive potential, which is inversely proportional to the distance be-
tween the interacting bodies, is called the Newtonian potential. It fol-
lows from the very definition of potential (2.3) that it has the dimension

of energy (work).

. . > >
If the point mass in coordinate system (i, ?, k) is replaced by a /22
material body of mass M and volume T, then, if we represent it as consisting
of n point masses and take the limit as n -+ =, we get

it § § § e nn Zeetie,
M T %m Ym Zm (2.4)

where 1 = Vx~x,)2+ =y )2+(2=2,)%, and d= =dx,dy,dz,.

Expression (2.4) is the gravitational potential of mass M on the
external point (x, y,z) of unit mass. The quantity p is the probability
density function of the mass, and integration is extended to the entire
volume of the attracting body.

The components of the force of attraction acting on the external point
may be found by direct differentiation of integral (2.4) with respect to
coordinates X, y, z:

F -9Y__ S S gpx_:"‘ dx,dy, dz . ;

aV Y Im
By =y =~ \ ngdx’"dy"‘dz”‘ ( (2.5)
x z

oV ' z2-z
F =2 -—f S S p —5—dx, dy, dz_,
L r )
x z
Integrals (2.4) and (2.5) are taken in elementary functions only in
some of the simplest cases. For instance, assuming that p = const and
switching to spherical coordinates in (2.4), we may immediately (in view of
spherical symmetry) derive equation (2.2) for the potential of a uniform
sphere. Thus, the attractive potential for a uniform sphere is equal to the

14



potential of a point with a mass equal to that of the body and located at
the center of the sphere. When the sphere is separated from the gravitating
body by an infinite distance, its potential (regardless of the shape of the
body or the probability density law) approaches potential (2.2) as nearly as
desired (the proof may be found [31]).

This fact facilitates the solution of many problems in celestial
mechanics. However, in studying the motion of ar¥ificial Earth satellites,
as well as the motion of space vehicles close to the Earth and other planets,
it is necessary to consider the shape and dimensions of the attracting body.
Since planets are not spherical in shape, and the density differs from /23
various points in the body, i.e. p # const, integral (2.4) may be only
approximately computed, e.g. by representation in the form of an infinite
series.

An expansion of this type with respect to spherical functions is writ-
ten in the form

V(r,&,k):i:- E —o( )(cnmoosm)wdmsinmk)&m(cosﬁ). (2.6)

Expression (2.6) may be derived by various methods. One of these derivations
is given in Appendix I.

The quantities r, ¢ and A in this expression are the geocentric spheri-
cal coordinates of the external point acted upon by potential (2.6). The
spherical latitude ¢ is reckoned from the axis X (which coincides with the
axis of rotation of the Earth), and varies over the range 0 <& < ml; the

longitude X is reckoned from the Greenwich meridian eastward in the region
0 < x < 27. The constant u = fM, where M is the mass of the Earth. The

quantity r, is taken as equal to the greatest equatorial radius of the Earth.

0
The constants Sim and dnm are the coefficients of this expansion. The

functions an (cos ¥ ) are Legendre's polynomials, PnO (cos ¥ ) (in some

cases the second subscript may be omitted for simplicity) being called the
principal Legendre's polynomial, an {(cos 8) (when m # 0) is an adjoint

Legendre function?; an (cos #) sin mx and an (cos #) cos mr are the element-

ary harmonics. The solution Y(& ,A) = ¢(&)A(X) of equation (1.7) (see
Appendix I) is called a spherical polynomial or a spherical function (some-
times also a space function)
! This system should be distinguished from the spher1ca1 astronomical co-
ordinates to be discussed later in which the latitude ¢ is reckoned from the
terrestrlal equator.

2 Also called associated Legendre functions of order n and index m. Ex-
pression (I.17') (Appendix I) shows the part played by the principal Legendre's
polynomials: they determine all associated functions of a given degree.
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Vo= (e, cosmied,  sinmr)P, (cos$),

nim
while the function

V(r,8,2) =R(MHY (S, ),

(see 1.5), which is a solution for equation (I.2), is called a globular or
solid function. Globular functions may be defined in the same way as rat-
ional integral functions (with respect to rectangular coordinates) of the /24
n-th degree which satisfy Laplace's equation. T

In order to understand the physical meaning of the individual terms in
expression (2.6), let us examine the zeros of spherical functions.

When m = 0, we get the function Yn = pnO (cos g ) This function

0
depends only on the spherical latitude ¢ and (as a polynomial of degree n)
has n zeros in the interval [0,n], (and as many zeros in the interval

[-n/2, w/2]). Thus, the function YnO = PnO (cos §), which is called a zonal

function or zonal harmonic, vanishes at certain latitudes, forming n + 1
zones on the sphere within which it maintains its sign. Naturally, zonal
functions can describe only the latitudinal effects of the gravitational

field and shape of the Earth.

The spherical functions Ynm when m # 0 contain both latitudinal and

longitudinal terms

Y, - P, (cosg) jcosmr, n=10,1,2,..;
Isinma , O<m<n,

If m = n, then according to (L17') and (1.17) after a transition
from x to cos g, we get

(2n)t
2"n1

1 . d2ﬂ
P (cos8)= sin” ¢ ~ (cos28—~1)" = sin® §.

2"n1 {dcos \3]2
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Then

=
nm

costA;
(2n)! sm"a{ ; ;
2% 1 s a.

These functions may vanish (with the exception of the poles, of course) only
at the meridians defined by the equations

cos nA = 0 and sin nx = 0.

They are called sectoral spherical functions, and they describe the purely
longitudinal cffects of the gravitational potential.

In the case where m # n, the functions must take on zero values along
n parallels and m meridians. Therefore, on the surface of the sphere, they
maintain their sign within curvilinear quadrilaterals and triangles formed
by the intersection of two parallels and two meridians, or two meridians
and a parallel, and are called tesseral harmonics (Latin tessera, a plate).
Tesseral harmonics reflect the mixed effects of the gravitational field
(effects which depend on both latitude and longitude). The number of zeros
for all harmonics increases with an increase in n or m. Consequently, the
general governing principals with respect to the shape and potential of the
Earth are described by functions of a lower degree. Local changes, on the
other hand, are associated with functions of a higher degree. 1In this regard,
the amplitudes of harmonics tend to decrease with an increase in the degree
of the function,

The coefficients of expansion (2.6) may be given a physical inter-
pretation: they are expressed in terms of integrals of the form

1 ¢
Id@Y’&;I Sxayszdm, o+ B+y=n (a,B,y ——are whole
T'o u

numbers)

(2.7)

and linear combinations of these integrals [32], and the quantities IaBY

when n < 2 are proportional to the coordinates of the center of inertia
(center of mass ) and the moments of inertia. When n > 2, the physical
meaning of integrals (2.7) becomes less clear. In Appendix III, where this
problem is considered in more detail , the discussion is limited to values
of n less than or equal to 2, although theoreticallv. similar relationships
may also be found for n > 2. For instance, in [31 and 32] the coefficients
in expansion (2.6) are expiessed in terms of relationships (2.7) up to a
value of n = 4, According to the results of Appendix III, we may write
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Coo=1L €10=Z,/toi €11=X./ro3 dy1 =Y, [1g; \
_A+B-3C.. . _E . 4, _D_.
207 oMrz " T M2 R Ml ’ (2.7").
‘22"?5}—;&2; 22 = 25,2 .
0 0 J

Here M is mass; T, is the mean radius of the Earth (heretofore the greatest
equatorial radius was taken as Ty there is no contradiction here since any
quantity close to the radius of the Earth may be taken); Xc, Yc’ ZC are the

coordinates of the center of gravity or inertia (see (II1.9))}; A, B, C are
the moments of inertia of the Earth with respect to the principal axes (see
(I11.12)); and D, E, F are the centrifugal moments of inertia (see(III.lZ')).

Let us note that if the body is dynamically symmetric with respect to

axis Zl (see Appendix III), then B = A. In this case, C = d21 =Cyy =

_ 2 . .
= d22 = 0, and S = (Cc - A)/Mro. The coefficient Cho 1S of the same order

as the quantity (C - A)/C, which is called the dynamic flattening of the
Earth.

Since the moments of inertia are proportional to the product of the /26
mass by the square of a linear dimension of the body, quantities (2.7') are '_——
dimensionless. The same may be said of the remaining coefficients of
expansion (2.6), since they are all expressed only in terms of dimensionless
integrals of the form IaBy

If the origin of the coordinate system coincides with the center of

gravity of the Earth, then €0 = %11 ° dll = 0. If in addition, the co-

ordinate axes coincide with the axes of inertia, then all centrifugal moments

of inertia will be equal to zero, and consequently, Cyy = d21 = 01,

Theoretically, proper selection of the initial meridian would also
make coefficient d22 equal to zero. However, Greenwich is taken as the

origin for readings, and d22 has a non-zero value.

1 s ‘.
According to-Ref. [32], "/C;1+d§1
€20

angle between the axis of rotation of the Earth (axis K) and the closest
principal axis of inertia.

where 6 is the

= 0<05+10-5,
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Since a geocentric coordinate system (rectangular or spherical) with
just such an arrangement of axes is selected as a rule in studying the
motion of artificial Earth satellites, there are no harmonics of the first
degree or tesseral harmonics of the second degree in expansion (2.6).

Taking consideration of everything said up to this point, we get
instead of expansion (2.6)

I o 2 )
Vir, %, ) = 7 1+ T [Czopzo(cosd)+
+(€y,c0820+d,, sin20)P,,(cos 8)] + (2.6")

0o n r n
+ I 3 Cﬁ> @nmcosz+dnmﬂnml)an«msd)}.

n=3m=0 r

However, in the following discussion, for the sake of brevity wé shall write
out the potential of attraction in form (2.6) without losing sight of the
fact that it has form (2.6').

In solving problems relating to the motion of artificial Earth satel-
lites, it is convenient to use the complement of ¢ rather than ¢ itself.
This angle ¢ = —%—- ¢ 1is reckoned from the equatorial plane of the Earth
fwhich coincides with plane 7 x ?) northward ( 0 <¥ < m/2p) and southward
(-m/2 <¢ < 0). It is equal to geographic latitude on the Earth's surface,

or to declination in the equatorial system of astronomic coordinates.

In this case, (2.6) will take the form
" ] n ro 3 . .
V(r:(P:x)zfr- n‘):lo m§0 T (CnmCOSM)\.+dnmSmm’)\.)an(Sm q;) . (2.8)

Sometimes equation (2.6) is completely written out in astronomical
equatorial coordinates r, ¥, t r (see for instance [32]) where t is the

G Gr
Greenwich angle reckoned westward, tGr = 360° - A. Then for V(r, ¥, tGr)
we get the expression
W oo n rO v -
V(r) P, tGT\.') = -; ni}o mfo(—r—> (Cnm costhr +
(2.9)

+dnmﬁnmtrpﬂzm(ﬁn¢).
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By using the formulas

sing = z2/r; coscp=\/I2 +y2/r;
sinh=y/V/x2 +y2; cosh=x/Vx%+y? ; (2.10)
r=vz?+y2?+z2, 4

we may convert equation (2.6) to rectangular coordinates.

Expressions (2.6), (2.8) and (2.9) correspond to the notation derived
by I. D. Zhongolovich for the attractive potential of the Earth [32], which
is extensively used both in the Soviet Union and abroad. 1In this regard,
the international notation used for the coefficients (for the expression

written in form (2.8)) is ¢ =C ,d =S .
nm nm’ nm nm

In the British and American literature, the gravitational potential

is frequently written ase the potential of an ellipsoid of revolution, rep-
resented by the formula

M © o (rY
V*”‘r‘[“ ?z‘n(”rg) "(‘P’]

(2.11)
or Jeffreys [33]
3 5
Mi% g Tof1 _ .2> 8plop
sz}_;[i‘ +lr(3 sin“ @ +35D75 401 * (2.12)

The quantities I and D, which are called the Jeffreys constants, are

related to S50 and 40 by the expressions

3 . 35
I=-5¢€y; D=7 C4- (2.13) /28

The coefficients of the expansion for the gravitational potential are
determined from measurements of the Earth's gravitational force field.
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§3, Gravitational Force Field

In cases where the motion of a body is being considered in a coordinate
system tied to the rotating Earth, the body is subjected to a translational
centrifugal force. The resultant of this force and the Earth's attraction
is called the force of gravity.

The centrifugal force is perpendicular to the axis of rotation and has
the components (in the absolute coordinate system) (—wzx,—wzy,O).

Thus, the modulus of this force is

P=w?rcosg, (3.1)

where w is the angular velocity of the Earth's rotation; r is the distance
from the center of gravity of the Earth to the moving point which has geo-
graphic latitude ¢ (reckoned from the equatorial plane).

It is assumed in this case that the Earth rotates as an absolutely
rigid body with a constant vector of angular velocity. The rate of rotation
of the Eatrth is quite accurately known at present, and is equal to

w = 7.29211-107° sec 1.

The force P has the potential function

U=3 w?r2cos2¢ 1), (3.2)1

DN

The expression for the potential of the force of gravity W may be
written in the form

- u;
V=V (3.3)

U is given by relationship (3.2), and V is the potential of attraction
determined according to §2.

1 Actually, function (3.2) satisfies the condition

2 2 .
P=-|gradU|=\/(g—u-) +(l-°—?!) =w2\/r2cos‘<p+fzsinzcpeos2<p=w2rcosgp.

r I deg

However, U is not a harmonic function since AU = 2w2,
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Surfaces where the potential maintains a constant value are called
equipotential surfaces or level surfaces. For the potential W, such

surfaces

W =V+U=const (3.4)

have recently become known as geops.

The direction of the force of gravity is everywhere normal to equi-
potential surfaces as otherwise the tangential component of the force of
gravity would cause the body to move along the surface (3.4).

In point of fact, if the effect of other heavenly bodies is disregarded
as well as some other insignificant effects, the particles of a fluid sur-
face would be subjected to the force of gravity alone, which in this case
would determine the shape of the attracting body. However, the surface of
the Earth is only partially covered by ocean, and the terrain of the dry
land is complex. Therefore, the shape of the Earth is described by intro-
ducing some arbitrary surface which differs from the true physical surface
and is called the geoid (this term was introduced by Listing in 1873).

The geoid is defined as the mean free surface which would be shown by
a worldwide ocean extending beneath islands and continents. It is assumed
that the mass of the continents and islands in this case is condensed direct-
ly beneath the surface of this arbitrary ocean. When we say ''mean free
surface', we assume that there are no tidal effects (i.e. we disregard not
only the effect of the moon, but also that of other heavenly bodies) and
that there are no disturbances due to winds. It follows from what we have
said that the surface of the geoid is the equipotential surface of the Earth's
gravity field.

The concept of the geoid is not sufficiently strict. The geoid may be
thought of as the surface of the ocean filling channels cut beneath the
continents and continuing the free surface of the water. The geoid may also
be represented in another way as the analytical continuation of the ocean's
surface beneath the continents. H. Poincaré [34] showed that these surfaces
do not coincidel. The distance bétween them is proportional to the square /30
of the altitude of the Earth's surface above the geoid. T

It follows from expression (3.4) that the shape of the geoid (as well
as the gravitational potential) may be described by an infinite series of

1 As a rule, the first of the two definitions given above is adhered to in /29
the literature. The use of the geoid concept for describing the shape and
potential field of the Earth is traditional, but not natural, and perhaps

not the most convenient. M. S. Molodenskiy's theory, which is based on

other principles, is briefly outlined below.
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spherical functions. The force of gravity g (acting on a unit mass) or
more precisely the acceleration due to gravity, is expressed in the same way:

oG T
T oy\or. Toy Tcosy g/ ° (3.5)

QO

R

For g we may write the series

oo mofp\ . )
g= = M (-——) (Anmcosmk+Bnmsmm)\)an(sm P) e

n=0 m=0 ro (3.6)

Just as in expression (2.6), the coefficients AlO’ All’ Bll’ A21 and 821
should be set equal to zero.

In many cases it is necessary to go from expansion (3.5) to an expan-
sion of the gravitational potential of form (2.6). I. D. Zhongolovich
considers a transition of this type [35] resulting from a comparison of
expressions (2.6'), (3.3), (3.5) and (3.6).

In the case where the values of - and dnm are known, the coefficients

A and B__ when n £ 4 are found from the equations
nm nm

_8 68 2 44 )
Ao ﬂo(l gM—TgmM + 75 MCyy +

4 2 48 .2 48 42 1\,
+5 €+ 5 Cog+ Ay,

- 8, .52 2 76
A20 go(czo+§‘m+§rm ’-ﬁ

_Ll,.2 _12.2 12 42 \.

68 2 .
Agg=8olCss — T MCgp + ‘7‘20‘22>s

MC20 -

g

(3.7)
Boo = 8o{d s “678’"‘122*:,2‘520‘122);

Agp = 802640

Agy =802¢5,;

By, = 802d;y;

Agy=802€;,;

By, = 802d5,; J
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Ayy=802C5;; )
Bys = 802dy3:
A4o-80(3c40+§§"‘ §§ me %0 —13?§ ¢30
3395? c32 ’%’56"122);

Ay = 80364
Byy =83dy,;
A42=80(3d42+3%m‘:22 “g‘g‘czoczz); ’ (3.7)
By, =80 (3d42+ %mdzz §§ Czadzz)
A43 =B03Cy3s
Bys =803d,3:
Agy = 90(3544 "33 ‘:22'*‘33 d; )'
B4 =80 (3"144 "3‘2“20‘122) ,

m= o’y /(28,);

g0=fM/rg=p./702 J

It should be pointed out that the quantities LY md22, 5022 and

d_ . are of the third negative order of magnitude and are comparable with

€20%22

such products (not included in formulas (3.7)) as 5030

terms containing c2 and dgz

22
magnitude.

and ¢ while

20%40°

are generally of the fourth negative order of

The reason that these quantities should be taken into account in

equations (3.7) will be apparent later (§5) when we consider a model for

the gravitational field of the triaxial Earth where the harmonics correspond-
are the most significant terms describing

ing to coefficients c,, and d22

22

this effect which appear in the expansion for the potential.

When going the other way (expressing coefficients Cm

of A and B
nm nm

all values of n and m) by the formulas

), the quantities Tm

Tam = Anm/AOO;

24

and w
nm

"Tnm

and d in terms
nm

should first be calculated (for

= Bnm/AOO'
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The coefficients of the expansion for the attractive potential are
then determined (for n < 4) from the equations:

€90 = T20 "%m—-l-(g)—qmz-r%m'cm... 3
+"71"':20 —1'72'(122‘*"‘22)-

522“"22(1" 7 T20 +-12—61-ém);

dzz‘“zz(l—%"zo*'ls—fm);

€30 '%"‘30»

€31 "15"31‘

d3, "‘12‘7‘31'

‘:32'%"‘32'

dsz"%“sz'

Cag = & Tags

dyg = 3 gy { (3.8)

Cho = % T40 +4—'§-m2 —-r/::lgm'r20+g—6§'5220 +1T35%(T§2+ﬂ222);

Cu1 = é—"u ;

d41“’1§"‘41'

Ca2 = %‘,"42 S MTg v 35 T T2t

d42'%‘"42 —FMTgp + 35 T T2z’

"43‘:13,"‘:43'

d43"%‘“43-

C44‘%§"‘44*%"‘§2""‘§2)'

du"’é""u*}%"az":z' )
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The discussion above concerning inclusion of quantities of the third /33
and fourth negative orders of magnitude in formulas (3.7) applies to
formulas (3.8) as well.

The quantity T, is defined as the mean radius of the Earth or as the

greatest equatorial radius.

. 2 . ..
In equations (3.8), m= %?E?—(l'fzoh , where b is the semiminor axis
a0

of the terrestrial ellipsoid.

The acceleration due to gravity g is frequently given in the form of

an expansion with respect to normalized spherical functions an determined

from the equation

_ (n~m)! cosmAa
P, (¢,2)= \/(2n+1)5 (n+m) 1 Pom(e) sin mx 7

8«1 when m=0, 8§ =2 when m> 0.

(3.9)

The normalized spherical function is distinguished by the fact that
its mean-square value on the sphere is equal to unity. In expanding the

force of gravity with respect to functions an, with coefficients Anm’ Bnm’
the relationship between them and the quantities Anm’ Bnm (see (3.6)) is-

given by the equations

" 1 (n+m)! .
Anm =\/(2n+1)6 (n—mji Anm 7

- 1 (n+m)!
nm (2n+1)8 (n—m)!

(3.9")

[o=1}

nm *®

Expréssions like these also give the relationship between normalized
and non-normalized coefficients Cm and dnm in the expansion for the gravi-

tational potential.

Equations (3.9) and (3.9') may always be used for finding the coef-
ficients Anm and Bnm in the expansion for the gravitational potential from

the known values of the coefficients in the expansion for the potential of
the force of gravity. Several authors have carried out computations of this
type (on the basis of various initial material). This was done in the

Soviet Union by I. D. Zhongolovich [32] in 1957 for the first eight spherical
functions of the potential expansion. I. D. Zhongolovich's coefficients

dre given in Appendix IV.
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In the case where the formula for gravitational potential in form
(2.12) is used, the coefficients I and D are determined from (2.14).
Jeffreys [33] gives the following values:

I =0.0016370 £ 0.0000041; D = 0.0000107

(when data from observations of artificial Earth satellites are taken into /34
consideration, I = 0.001630 + 0.000001).

The numerical values of the coefficients Ii in formula (2.12) are equal

to the left of the decimal point to coefficients < and may be taken from

0!
Appendix IV. The values of Ii found by American authors are given in this

same section.

During gravitational measurements, local irregularities in the mass
distribution of the Earth may cause local variations in the force of gravity.
Therefore, gravitational measurements must be distributed as uniformly as
possible over the Earth's surface, and the number of measurements should be
considerably greater than the number of coefficients to be determined.

The necessity for an excess number of known values of the force of
gravity is also the result of representational errors (i.e., errors due to
the discrete nature of gravimetric measurements), as well as partially un-
avoidable errors in measurement. The smoothed statistical values of the
coefficients in the expansion are always determined in practice. This
explains the fact that an increase in the number of coefficients to be deter-
mined (for a fixed number of measurements) leads to a reduction in their
accuracy.

Since gravimetric measurements are made at different geographic points
and at different altitudes with respect to sea level (i.e. on the so-called
physical surface of the Earth, which is not an equipotential surface), the
use of these measurements for determining the parameters of the gravitational
field is a fairly complex problem.

One of the methods for solving this problem, the traditional method,
boils down to reducing measurements of the force of gravity to the surface
of the geoid. However, in this case, we are faced with the difficulty of
plotting the geoid in regions where external masses are present, and of
analytical continuation of the force of gravity through these masses.

Various methods may be used for transposing projecting masses to the
interior of the geoid or onto its surface. This process is called regulari-
zation of the Earth, and the resultant figure is called the regularized
geoid. However, the use of a regularized geoid does not eliminate the
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uncertainty due to ignorance of the actual distribution of masses between
sea level and the physical surface.

The complex geometric shape of the geoid results in inconvenient mathe-
matical relationships which make it difficult to analyze measurements of the
values of g. Therefore, instead of the geoid, an ellipsoid called the ref- /35
erence ellipsoid or the geodetic ellipsoid is taken as the reference surface.
The choice of an ellipsoid as a reference surface is also explained by the
possibility in this case for using the results of the Stokes theory (as well
as Molodenskiy's theory, as we shall see later) which states that the po-
tential of the force of gravity of a rotating mass is uniquely determined by
giving the mass of the body, the external equipotential surface and the rate
of rotation. If we use this procedure for determining the potential of a
body (ellipsoid) sufficiently close to the shape of the Earth, then finding
the external potential reduces to the determination of small differences
whose squares may be disregarded. In most cases, the reference ellipsoid
is an ellipsoid of revolution! with a shape characterized by the amount of

flattening o
(a - b)/a

where a and » are the axes of the ellipsoid.

The shape of the Earth, just as the potential, is found in the form of
deviations of the geoid from the reference ellipsoid.

In connection with the use of the reference ellipsoid as the simplest
surface, only slightly differing from the geoid, we introduce the concept of
the normal force of gravity as the force of gravity on the chosen reference
surface.

The normal force of gravity (designated in gravimetry by the letter v)
is expressed by a simple relationship which may be easily used for finding
its value at any point on the ellipsoid surface. Because of this, the prob-
lem of studying the force of gravity itself is replaced by an investigation
of comparatively small deviations in the force of gravity from the normal
values (so-called anomalies). Reductions of the force of gravity are like-
wise replaced by the reductions of anomalies.

The difference between the complete and normal values of the potential
is called the disturbing potential. The use of the disturbing potential
makes it possible to limit computations to the linear theory in determlnlng
the coefficients of the expan51on

1 A triaxial ellipsoid may also be taken (see for instance [36 37 38])
In this case its shape is determined by the amount of polar flattenlng o
and equatorial flattening y = (b - ¢)/b.
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Several formulas are known for the normal force of gravity [36, 37].
Let us cite a few of them.

~
o

The Helmert Formula (1901 - 1909)
Yo = 978,035()+ 0,005302 sin” ¢ — 0,000007 sin%2¢)
derived for an ellipsoid with flattening a = 1:298.2.
Cassini's Formula (1930)
Y, = 978,049(1+0,0052884 sin? ¢ - 0,0000059 5in”2 ¢)
derived for a Hayford spheroid with parameters o = 1:297.0, a = 6,378,388 m.
Zhongolovich's Formula (1952) for an ellipsoid of revolution
Yo = 978,0573(1+ 0,0052837 sin? ¢ ~ 0,6000059 sin22¢)

corresponds to an ellipsoid with parameters o = 1:296.6, a = 6,378,070 m,

Expressions for the normal force of gravity may also be written in
spherical functions. In this case, the Helmert formula takes the form

Yo = 979754,85+ 345440 P, (sing) +6,26P,( (sin ¢)

or in normalized functions
Yo = 079754,85 + 1544,85 P20 (sing) +2,09 Pm(sin @)

The Hayford spheroid with the parameters cited above has been recom-
mended as an international reference for geodetic projects. Geodetic measure-
ments in the Soviet Union are based on the Krasovskiy ellipsoid (g =
= 6,378,245 m, o = 1:298.3). It has recently come to light that this figure
represents the entire Earth as a whole better than the Hayford spheroid.
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The theoretical impossibility of determining the shape of the geoid
has made it necessary to look for other methods of studying the gravitational
field of the Earth. A new approach has been proposed by M. S. Molodenskiy,
who has formulated and solved the problem of determining the external gravi-
tational field for the general case where measurements are given on the
physical (nonequipotential) surface which encloses all masses of the Earth. .

The disturbing potential T may be found from a solution of the third
boundary value problem of potential theory. The distinguishing character-
istic of the Molodenskiy problem lies in the fact that the surface on which
the limiting boundary condition is defined in the given case is only approxi-
mately known. This boundary surface, i.e. the surface of the Earth, is the
one to be determined.

Molodenskiy reduced the solution of the given problem to solution of
an integral equation with respect to the disturbing potential T or the
altitude anomaly . In this case, the physical surface of the Earth and the /37
external gravitational field are not regularized, and determination of the T
shape of the Earth reduces to finding geodetic altitudes (altitudes of the
physical surface of the Earth above the reference ellipsoid) which may be
strictly determined from measurements.

To solve the integral equation which he had derived, M. S. Molodenskiy
expressed the disturbing potential in the form of the potential of a simple
layer of density ¢ distributed over the surface S [39]:

In this case, the force of gravity in outer space is represented as the
sum of the principal part (i.e. the normal force of gravity) and the attrac-
tion of layer ¢ located on the physical surface of the Earth. The value of
density ¢ is found by solving Molodenskiy's integral equation which contains
the values for the anomalies in the force of gravity found by measurements
on the physical surface. Thus, measurements of the force of gravity may be
used for direct determination of the parameters of the external gravitational
field.

The greatest difficulties which arise during practical implementation
of this procedure for solution of a problem are associated with the fact
that the measurements of the force of gravity are not densely distributed
over the entire physical surface, but rather are made at discrete points.
The necessity therefore arises for representing this quantity in regions
where no measurements have been made. Topographic maps may be used for cal-
culating the most highly anomalous part of the variation in the force of
gravity (that part which is due to the attraction of topographic masses)
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accurate to 10-15%. It is preferable to totally eliminate the effect of
topographic masses (those projecting above the equipotential surface) from
the anomalies in the force of gravity, but to take this factor into account
later in derivation of the disturbing potential T (see L. P. Pellinen [40]).
Mathematically, this is also achieved by isolating the effect of a spherical
layer of thickness HO in the effect of the topographic masses gp. The geo-

metric interpretation [40] reduces to construction of a smoothed physical
surface which passes through gravimetric and astronomogeodetic points. In
this process, the projecting topographic masses are removed and depressions
in the actual physical surface are filled in. This transposition of masses
results in smoothing of the physical surface. Hence, Molodenskiy's theory
will be applied to the remaining anomalies, and the physical surface will be /38
smoothed to such an extent that it will be possible to use the Stokes series
(which relates the values of T and ¢ to anomalies in the force of gravity and
is theoretically valid if the physical surface coincides with the equi-
potential surface), i.e. to use a well-known procedure for finding the
unknown quantities.

Gravimetric surveys take Potsdam (East Germany) as the international
reference point, since the first precision measurements of the absolute
force of gravity were made there. Relative measurements are made at all
remaining reference points in each country, so that all measurements are
made in a single system called the Potsdam system. The results of absolute
measurements in a number of localities show that the absolute value deter-
mined at Potsdam is too high by approximately 13 mgall. This correction must
always be made in quantities derived in the Potsdam system.

Gravimetric measurements are not the only method for determining the
figure of the Earth. Besides, in and of themselves, these measurements may
only be used for determining the shape of the Earth. In contrast, the geo-
metric method (which utilizes problems solved by higher geodesy) generally
speaking, permits determination not only of the Earth's shape, but also its
dimensions. The advantages of using gravimetric measurements rather than
geodetic are related to the fact that these measurements may be made not only
on dry land, but also on the ocean which covers the greater part of the
Earth's surface. In general, however, these two methods complement each
other: a strict solution of geodetic problems is impossible without using
gravimetric data, and vice versa.

These procedures for determining the figure of the Earth (and hence its
gravitational field) are not the only such techniques. The astronomical
method based on studying perturbations in the motion of artificial satellites
and the method of space triangulation have recently come into use for deter-
mining the shape and dimensions of the Earth. The investigation of satellite

1 A milligal (mgal) is ‘equal to 0.001 gal--the unit of acceleration in the
CGS system (named in honor of Galileo). This is the acceleration imparted to
a mass of 1 gram by a force of dyne. The total mean acceleration due to
gravity on the surface of the Earth is 970.1 gals.
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motion provides for considerable refinement in the parameters of the geoid.

In this connection, artificial satellites are better for determining the
coefficients of lower harmonics in the potential expansion, while gravimetric
methods are preferable for the coefficients of upper harmonics. In particulay
the most recent determinations of polar flattening of the Earth, which util-
ized satellite data, are apparently the most accurate. For instance,

J. Kozai (United States), using information on satellite motion for deter-
mining polar flattening, got o = 1:298.31 + 0.01 [41], and H. Jeffreys got

a = 1:298.05 £ 0.11 [33] (see also Appendix IV).

Fundamental research on the gravitational field of the Earth was begun
in 1952 by I. D. Zhongolovich who used the gravimetric material available up
to that time for determining the parameters of the Earth and the coefficients
in the expansion for the force of gravity up to and including the eighth
harmonic [35]. This work was used as a basis in [32] for determining the
coefficients in the expansion for the attraction potential up to and includ-
ing the fourth harmonic!. The polar flattening found in these computations
is equal to a = 1:296.6.

In recent years, Kaula (United States) has computed the coefficients
in the expansion for the force of gravity up to and including the eighth
harmonic [42]. He obtained for polar flattening and the semimajor axis of
the general terrestrial ellipsoid: o = 1:298.24 £ 0.01, and a = 6,378,163 *
+ 15 meters, respectively. ‘

Given for comparison in Table 2 below are the coefficients of the nor-
malized spherical harmonics in the expansion of the potential for gravitation-
al anomalies computed by Zhongolovich and Kaula for the normal Helmert
formula. The table also gives the mean square errors (according to Kaula
[42]) in determining the coefficients of the expansion.

It is evident from the table that the coefficients as determined by
Kaula differ considerably from those determined by Zhongolovich. This is
explained by the difference in the number of gravimetric data (a much greater
amount of material was available to Kaula), their methods of analysis, and
the hypotheses on which the procedures were based. Apparently Zhongolovich's
values are somewhat too high, while Kaula's are too low.

As we have already mentioned previously, the coefficients in the
expansion for gravitational potential found by I. D. Zhongolovich are given
in Appendix IV. This same appendix also gives the values of the coeffici-
ents, ‘according to non-Soviet sources.

T According to materials published [35], the coefficients may theoretically
be found to the eight harmonic.
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As may be seen from the figures and tables given in this appendix, /41
the coefficients for the 5th and 6th zonal harmonics are extremely uncertain,
while the coefficients for the sectoral and tesseral harmonics have been
determined with still less certainty. Moreover, the same may be said of the
coefficients for the upper harmonics. For this reason, there is little
justification in using a gravitational potential which includes harmonics
above the fourth at the present time.

As has already been mentioned previously, knowing the external gravi-
tational field is equivalent to knowing the figure of the Earth and vice
versa. Actually, the Stokes formula or Stokes series may be used for going
from the equation which describes the gravitational field to that which
describes the shape of the Earth [36, 37]. Maps for the altitudes of the
geoid given by various authors (Zhongolovich 1952, Kaula 1961) differ con-
siderably from one another [37]. This is explained , just as the difference
between the coefficients in the expansion calculated by the different authors,
by the differences in the initial material and the methods for analyzing
this material.

The representation of the discrepancy between the geoid and the ter-

restrial spheroid (the figure represented by the sum of harmonics POO and

P..) gives a table which was presented by Kaula [43] for the standard
deviations on{N} of altitudes corresponding to the n-th harmonic of the

equation for the surface.

TABLE 3 ©

n G:,Mz n 0':,2.42 n ci ,}42 n 6;‘:,)42
2 | 308 10 7,8 18 2,8 26 0,7
3 | 4cs 11 7,8 19 1,3 27 0,3
4 | 140 12 2,4 20 | 0,8 28 0,5
5 28 13 4,4 21 1,5 29 0,2
8 41 14 5,8 22 1,0 30 0,1
7 3,3 15 4,8 23 0,8 31 | 0,05
8 18,8 18 1,1 24 0.9 32 0,08
9 14,8 17 2,0 25 0,7

The overall variance for the difference in altitudes of the geoid and
spheroid is about 35

1,075 me, and ) orz1 = 1,062 m
n=2

2

*Tr. Note: Commas indicate decimal points.
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Thus, the mean difference between the altitudes of the geoid and of
the figure represented by 32 harmonics is equal to approximately 3.6 meters.
4
It may be seen from Table 3 that Z oi = 908 m2, i.e. the remaining har-
n=2
monics (from the 5th to the 32nd) have about the same overall effect on the /42
shape of the geoid as the fourth alone.

This conclusion is completely applicable to the relative weight of
the various harmonics in the expansion of the Earth's gravitational potential.
Everything said here leads us to assume that the upper harmonics make a small
contribution to the disturbing function, and a disregard for these harmonics
(due specifically to inaccurate knowledge of the coefficients) should not
cause any serious discrepancies between the calculated and actual motion of
an artificial satellite. However, in many cases, it is necessary to have at
least an approximate numerical estimate of this value. The derivation of
such an estimate is taken up in the fourth section.

§4. Approximate Description of the Gravitational Field

In all cases where the gravitational potential is represented in the
form of a finite sum (and this must necessarily be done in practice), it is

necessary to evaluate the error due to dropping the remainder of the series!.

Before going on to an estimate of the error introduced by averaging
of this type, let us mention the important property of orthogonality of
spherical functions, according to which

){Em(sin ) (sin¢) on WA D% iads=0  when i, m#j;
. 2 278, ~ ()l
P (si °.°SJ L 2mby (s hen  peime (4.1)
g[;Jva)anmx ds et et whe n=i,m=].

Here 6m = 2 when m = 0, and 6m = 1 when m > 0. Integration is carried out

with respect to the surface of the sphere I.

Since the upper harmonics in the expansion for the potential V describe
small (low-amplitude) local singularities in the gravitational field, dis-
regarding them is equivalent to averaging the function V. This smooths out
the oscillating nature of V since the localized structure of the field is
ignored while its fundamental governing principles are maintained.

1 An estimate of the residual term of the expansion 1/p (see (IIL.2%) may
be found, for instance [31, 44, 45]. However, obtaining this estimate does
not solve the problems raised in this section.
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278, (n+m!

TS GE:EET is called the norm of the function

The quantity

Pom (Sﬁl@)ggf"‘l-i. A proof of property (4.1) may be found [31, 44, 45].
Let us now consider a potential of the form /43
o4 2 .
VB = ?[1+‘q C20P20(81n o)1, (4.2)

where q = ro/r<1.

The function Vg = $42620P20(sin ¢) in expression (4.2) is the dis-

turbing potential. The mean square value of V_ . on sphere I (with regard to

20
(4.1) is equal to

f Vyods
2

1 g 2

o=\ 777 = V579 [0l (4.3)

Reducing this value to the potential of the spherical Earth, we get

52(;’\/%“1215201- (4.3")

The nature of relationship EéO (q) is shown in Fig. 1, which indicates

the part of the potential of the spherical Earth which is comprised by dis-
turbing potential V20 as a function of the relative distance 1/q.

Let us now break up the gravitational potential of the Earth into two
parts. The first, which will be taken into account, we shall call the /44
normal potential; the second, which will be disregarded in analysis, we T
shall call the disturbing potential (or the potential of gravitational
anomalies). The potential of anomalies thus represents the difference be-
tween the potentials of the true and normal fields®.

The normal potential has already been considered above in §3. It was sel-

ected so that the disturbing potential was small enough to permit solving the
gravimetric problem in the linear formulation. In the given case, as in

general in the theory of satellite motion, the normal potential is selected

so that the errors in determining the motion of the center of gravity of the
satellite will fall within certain limits.
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the problem,

The gravitational field
of the general terrestrial
ellipsoid is taken as normal
field in the theory of the
Earth's figure.
associated with satellite
motion, a different normal
gravitational field may be
chosen. In this case, two goals
are kept in mind:
simplicity, and achievement of
the required accuracy in solving

In problems

maximum

Let the normal potential
be represented by the sum of
the first (k - 1) spherical
harmonics. Then the potential

of -anomalies is written in the

form

122

w /7 i .

T- ? 2 . Eo(ﬂigj (¢ mcosma+d, . sinmA)P, (sing)
= m=

or
w 2 nel
Vo=— 2 ¢ N_.
A R
r2 n=k
Here
n - -
N,= I ro(cnmcosmx+dnmsmmx)an(smcp)

M

(4.4)

are the deviations in the altitude of the geoid corresponding to the Legendre

polynomial Pn'

Hence an expression may be derived for the mean square value of V :

2 _ . y? 1 RS TE T
O'A_é'VAdS/‘l'n::-—-—- Ekq o .

A
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According to Schwartz's inequality, we get /45

2 - .
oﬁ < '&—E z $(n—1) c:.
4nr n:k n-k

Since

we have, for the estimate reduced to the potential of the spherical Earth

k~1
G, < 1 a : T ol
A= 212& :/71_‘14 ek © (4.5)

Since the right member of inequality (4.5) contains an infinite sum of quan-
tities o;, this expression is also unsuitable for practical use. However,

this estimate may find application if the infinite series is replaced by a
partial sum with a sufficiently large number of terms.

In the case where the number of terms in this sum is equal to i, a
repetition of the above operations gives

2 i i 2 4( k-;l_ . i) : ‘
c‘i S_LZ' 2 qa(n-—l) ] 0':- ¢ ry a4 n 1 z cr: .
4=y n =k nek 4mr 1-¢g nwk

is equal to

The relative error CA

- q 4 qlﬂ—l_ql i 4
[¢3 S . E [
A 2?2 V% 1_q4 n-kcn (4'5')

It was pointed out in 83 that the mean difference between the alti-
tudes of the geoid (the figure represented by an infinite series) and that of
the figure described by 32 harmonics is approximately 3.6 m (according to
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Kaula) . Therefore, i may be taken as equal to 32 in the formulas given above
with an accuracy completely suitable for practical purposes. In this case
the values of c; are taken from Table 3, and the lower limit of the summations

is equal ton = k = 3.

The deviations 9, in Table 3 are determined relative to an ellipsoid

described by only the zeroth and second zonal harmonics; therefore, the pre-

sence of the second sectoral harmonic must be taken into account in the right-
hand member of inequality (4.5). The deviation corresponding to this harmonic
is given in the same table by the quantity o, (the notation o,, = o, is used

in inequality (4.6)).

In the case where the potential of anomalies contains higher harmonics
beginning with the second sectoral harmonic estimate (4.5) takes the form

2 32
- q [ 2 q -q° 32 ,
o < [o3 + — I 0o
Ay S 2Y2\/.EV 22 \/1_q4 L2 % (4.6)

while if it contains harmonics beginning with the k-th,

. —
E—-1 _ 32 39
5y < — T (4.6")
EToortym | 1-gt n=k
When Table 3 is used for giving the quantities o;, the right-hand

members of inequalities (4.6), (4.6') should be increased by a factor of
2-2.5.

The curve in Fig. 1 represents the maximum relative mean

'6A3’max

square error in the case where the normal potential contains only the zeroth
and second zonal harmonics.

Table 4 shows how this error changes as a function of the number of
harmonics retained in the normal potential.
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TABLE 4 *

[¢3
Higher Harmonic in the 7|"éﬁﬁqm: o
Normal Potential q-= 0'9]< q - 0.6%(
- m =
rav 7080 | rav 9360 Km
o1 0,1-10—% 0,14 -10-6
4 0,1+105 0,3 =107
8 0,8-10~7 0,16-1077
18 0,2-1077 0,3 -10~8

Perturbations in motion may be assumed to be linearly dependent on the
magnitude of the disturbing potential with sufficient accuracy for practical
purposes. Since disturbances from the effect of the second zonal harmonic
are comparatively easily found, 5A may be compared with G,y at various k

k
to estimate {in fractions of the disturbances from the second harmonic) the

errors in motion which result from disregarding gravitational anomalies.

It will be evident from the results of the second chapter that dis-
turbances from-the second zonal harmonic (over an interval of up to a few
days) may reach several hundred kilometers. The error due to disregarding
terms of the potential expansion associated with 6A3 is two orders of magni-

tude less than the quantity o,q, therefore the error in the position of a

nearby satellite (q = 0.9) will be no more than a few kilometers in this case.

When four spherical harmonics are considered in the potential expansion (for
the same values of ¢q,), the error will be three orders of magnitude lower,
i.e. no more than a few hundred meters off in the position of the satellite.
The inclusion of 8 or 16 spherical harmonics in the potential would make it
possible to determine the position of a satellite close to the Earth with
extremely high precision if the coefficients associated with the higher har-
monics were known with sufficient certainty.

An uncertainty in the position of these satellites is also introduced
by the fact that the effect of other insufficiently studied factors (such as
variations in the density of the upper atmosphere) may lead to errors of the
same order of magnitude.

These conditions dictate limitation of further analysis to a potential
containing no more than four spherical harmonics. The order of the resultant

error in this case may be estimated by using the inequalities already derived.

! Harmonic P22 is included in the potential of anomalies.

* Tr. note: Commas indicate decimal points.
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We must not lose sight of the fact that the effect of higher terms in
the potential expansion (chiefly the terms which account for the triaxial

form of the Earth) may cause resonance phenomena in the motion of a satellite.

This point is taken up in more detail in Appendix VIII to the second chapter.

§5.- Models of the Gravitational Field
Let us write out the equation for the family of equipotential surfaces
of a rotating attractive body

here V is series (2.6').

Some value of the constant C isolates from the set of equipotential
surfaces that one which is the surface of the attractive body in the case
where that body is a liquid.

Let us determine the coefficients of the expansion V and the constant
C assuming that the Earth is an ellipsoid of revolution

2
72 cos:cp :m P - -1,
T, ro(l—a) (5.2)

with only a slight deviation from the circumscribed sphere of radius r The

0"
deviation of surface (5.2) from the spherical is due to the presence of a
small parameter o, which as a rule is taken to be polar flattening

where g and b are the semimajor and semiminor axes of the ellipse; the semi-
minor axis coincides with the axis of rotation of the Earth.

The eccentricity of the ellipse (the so-called first eccentricity)

¢ =va® -b%/a
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is related to fléttening o by the expression!

or [32]

e?n2 +3a?+4ad 4 oen o

From equation (5.2) we get

2 rg(l—cn)2
ro= . (5.3)
(1—a)2 cosch+ sinch
By transforming the denominator
(1—o)2cos?¢+sin?g=1—2a cos? cp+a2cos2<p+

+a2 cos?y ~a2cosd g = (1-acos? @)+ a? cos? ¢sin? ¢ ,

we get
2 2
e foll-e)
(l—a.cosz(p)2+o.2c052cpsin2(p
Alternatively /49
-l
To(l—a) otzcosz(psinzca %
r- —_———— = 1+—————-—'— .
1-acoslq (1—acos2<p)2

1 1n addition to the first eccentricity e, we might also consider the second

eccentricity e, = Ja2 = b2/b, The relationship between e and e, is:

2. .2 2
ey = e,/(1xel).
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Let the flattening of the terrestrial ellipsoid be so small that we
may disregard powers of o greater than the second. Then, if we expand the
expression enclosed in the brackets in a series, retaining only terms of the
first and second negative orders of magnitude, we get

ro(l—o)
r=- 90 [1—% azcoschsinchJ .

l—ccos?g

Hence,
= in2 3 2. .
To/T = 14+asin P+ya Slnch‘%“2$1n4<p,

which gives within the assumed limits of accuracy

!’O/I=1+asin2<p+%azsin2cp—-12-oc2sin4cp. (5.4)

The gravitational potential of a uniform ellipsoid of revolution may
be expressed in terms of zonal harmonics alone (see §2) in the form

oo s 2An
e o T (7o ;
V=7*anl(7> € 2n,Pan, (510 @) (5-5)

The deviation of ellipsoid (5.3) from the spherical is due to the
presence of parameter o, while the deviation of potential (5.5) from that for
a sphere is due to the presence of the sum in the right-hand member. There-
fore, the coefficients assoicated with the terms of this sum (beginning with
CZO) will be quantities of at least order 0(a)?t.

Further, we see that this order pertains only to coefficient 0%

coefficient 10 has order 0(a2), 60 has order 0(a3), etc. (see [32]).

symbol o(a) designates a quantity of a higher negative order of magnitude
than o.
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Thus, we may write (5.5) in the form
r o\3 . oV .
V=~F—[—rg +<—r£) Czono(smcp)+(—r—> € 4o P40 (sin cp{l, (5.6)

retaining only the two first terms .from the sum in (5.5) and assuming for the
present that they are both of order 0(a).

Let us introduce the notation

wzfé;(l—oc)/p.a K.

The quantity m is approximately equal to the ratio (m') of centrifugal force /50
to acceleration due to gravity at the . equator. The parameter

, 2.3 2
m'= o't fu=o 70/gEQ

which is of the order of flattening, is called the parameter of the Earth's
figure. Actually, if it is assumed that w = 27/86,164.1 (mean seconds in
sidereal days), r, = 6,378,245 meters, gEQ = 978.049 gals, we get

m = 1:288.365.

This value coincides almost exactly with the latest determinations of polar
flattening of the Earth.

The potential of centrifugal force with regard to terms down to 0(a?)
may be transformed as follows:

wit
m)rg ( 1—0(.)2 (1+2acos2 ({))COS(? =
0 (5.7)

[T e

! (1)2'2(:052(?:

5
s

o] ad

-l;—m [T+« —-(1+3cx)sin2q; +2a sin4<p].
0

Taking expressions (5.4), (5.6) and (5.7) into account, expression
(5.1) becomes
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(e 3 2]\ 1 .
ro{l+(a+.§- o )smzqn - _§a2 sinf o+ (14
+3a sinch)czop-zo (sing) + (1 +5asin2<pc40P40 (sing) +

+%m[l+ o - (143 )sin2cp+2asin4‘cp]}+0(o.2 ) =

Expanding the expressions for Legendre's polynomlals, we get within the
assumed limits of accuracy

r {l+(a4-%a2)ﬁn2¢ - %a25m4¢4-(1+3asm2¢)(1+
0

+3asin? @) ¢ 5o+ (1+ 5 sin? ) (35 sin® ¢ — 30 sin® ¢ +3) 5 C g +

+ -12-m[1+ @ = (1+3a)sinZq + 2asin® @) }1:: C.

Since the expression on the left-hand side of the equation must remain
constant, the coefficients associated with the various powers of sin ¥ must
be set equal to zero after removing parentheses and combining similar terms.

As a result, we get the four equations

= 3
¢ ro[l §C20+8C40+2"’]»
3 30 3 2_3 1, 3 15 .
5C0~F C4o+a+-§ @’ = Faly — gy M—gmat+Faly~ 0; (5.8)
35 1 9 0
—8—640——2- -2-onc2o-—onm—-—1—-5—-onc40=0;
175
8 ac40 s:O J

The last equation shows that ac,. = 0 within the assumed limits of

40
accuracy, i.e. the quantity Ch0 = o(a).

It is evident from the first equation in system (5.8) that the constant
C in the equation for the surface of the terrestrial ellipsoid (5.1) is equal
to the potential of the force of gravity at the equator.

From the second equation in system (5.8), limiting ourselves to the
terms of order 0(a), we get

2 1
Czo=‘§(°°~"§"')- (5.9)
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From the third, we get

8 (17 2_5

Substituting (5.10) in the second equation of system (5.8), we get,
taking terms of order O(az) into account

2 1 1 2
C2O=-—§-<ot—§-m—§-cx +~%—am>. (5.11)

Thus, the first two coefficients of the expansion for the disturbing
potential are expressed in terms of the parameters for the terrestrial
ellipsoid. It is clear from these expressions that c,, = 0(a), while
a0 = 0(a¢?). It has already been pointed out above that 60 = 0(a3) [32].
The remaining coefficients associated with the zonal harmonics are of a
higher negative order of magnitude.

Let us now examine various models of the gravitational field of the
Earth. By expressing the potential for practical purposes in the form of a
finite sum rather than by series (2.6') we allow an error which decreases
with an increase in the number of terms retained (see the preceding section).
However, since any definite effect of the gravitational field may be described
by a combination of several harmonics, the addition of one or several terms
does not always reduce the error with which the true field is approximated.

For instance, the most significant term (in the expression for the /52
potential) which reflects the phenomenon of triaxiality (equatorial flat-

tening) is

r 2
-E’-(—;Q) ((:22cos27»+d:.,2 sin22) P, ,(sin ¢). (5.9")

If we add to the potential represented by the sum of the zeroth and
second zonal harmonics only one of the terms of expression (5.9') (which will
by no means account for equatorial flattening), there will be absolutely no
improvement in the description of the gravitational field of the Earth.

Therefore, the geoid (and consequently its gravitational field) should
be approximated by actual physical bodies, with consideration given to the
negative order of magnitude of the terms which are dropped, and of those
which are retained.
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In the discussion which follows, we shall call such approximate rep-
resentations of the Earth and its potential '"models'.

Several simplest models may be constructed.

The Spherical Earth with potential
w
Vo = 7 (5.10")

This model is convenient in the fact that motion in field (5.10') is
most simply described. As we know [1, 2, 3], an orbit in this case is deter-
mined by 5 constants (Kepler elements) which are expressed in terms of the
initial conditions and do not change throughout the entire extent of the
motion. Motion in a field of potential V, is called Keplerian motion. The
difference between the potential of the geoid and the potential of a sphere

is called the disturbing potential in analyzing satellite motion, while the
corresponding motion, which differs little from Keplerian motion, is called
disturbed motion.

In order to determine the position of a satellite in orbit in the case
of Keplerian motion, it is sufficient to perform a single quadrature or to
solve a transcendental equation (Kepler's equation).

The errors in satellite motion which arise when model (5.10') is used
will be discussed in the second chapter. In a number of instances (for exam-
ple in preliminary calculations associated with orbit planning [4]), these
errors may be disregarded for the sake of simplicity and clarity of the compu-
tations.

The Spherical Earth with potential (uodel B) /5

r \2
Vg = *}[1 ”20(?9) P, (sin (p)]. (5.119

According to (5.9), coefficient 50 is proportional to polar flattening

of the Earth. Therefore, (5.11') is the potential of an ellipsoid of revolu-
tion in which the square of the flattening may be disregarded. We shall call
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such an ellipsoid, which differs little from a sphere, a '"spheroid"!. If the
expression for on (sin.p) is expanded in (5.11'), we see that the second

term in the brackets will be equal to zero when sin%p = 1/3, which corresponds
to two latitudes ¢ = +35°15'52'". At these points, the potential of attraction
of a spheroid is equal to the potential of attraction of a sphere. At the
equator (¢ = 0) and at the poles (¢ = 90°), the potential of the spheroid is
respectively greater than and less than that of the sphere. The maximum dif-
ference between spheroid and sphere is proportional to flattening (a =

= 1:298.3; see §3 and also [37]), i.e. it is equal to approximately 21 km.

It was shown above that the second zonal harmonic is the most signifi-
cant part of the disturbing potential. Therefore, (see second chapter), the
errors in satellite motion when using model VB will be considerably lower

than in the case of model VO'

In cases where satellite motion is considered over an interval of
several orbits, the selection of attraction potential in form (5.11') quite
frequently yields the required accuracy of the solution.

The Earth is represented by an ellipsoid of revolution with
potential (model B)

-  \2 o\ 4
VB"';'LI*“%O(TO) on(Si“CP)+C40(r—0> Po (sin ‘P)]' (5.12)

Ellipsoid of revolution in this case is understood to mean a body for /54
which the degrees of flattening o(a?) may be disregarded.

! This is the name used in the theory of the Earth's figure for a body having
potential Vp. In the literature on celestial mechanics, the term '"spheroid"

is sometimes understood to mean an ellipsoid of revolution for which the
gravitational potential is the sum of a finite or infinite number of zonal
spherical harmonics. A spheroid for which the potential is determined in the
form of equation (5.11') while 50 is determined from equation (5.9), coin-

cides to an accuracy of first-order infinitestimals with the Clairaut spheroid
which is part of the theory of the Earth's figure.
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Since terms of the expansion are taken into account up to degrees o2

in (5.12), coefficients 40 and 90 must be taken in form (5.10), (5.11)!.

The square of flattening should be taken into consideration from the
standpoint of improving accuracy in solving a satellite motion problem, as
will be evident from the results of the second chapter, chiefly when consider-
ing comparatively long time intervals.

The Earth is represented as a triaxial ellipsoid (model )

2
Vp = ‘;— [1 +c20(irq> Py (sing) +
) (5.13)
+ (.r?o.) (€ yqc082n+d,, sin20) Py, (sin ‘P)]'

The effect of equatorial flattening y is characterized in equation
(5.13) by the second sectoral harmonic, coefficients o and d22 being pro-

portional to y.

Since
vy = 1:30,000,

5 and d22 are approximately of the same order of magnitude as the square of

polar flattening o.

The difference between the semimajor and semiminor axes of the equator-
ial ellipse is approximately 150-250 meters.

According to [37], the semimajor axis of this ellipse has an extremely
uncertain longitude which lies between A; = 38° and A, = -25°.

Let us note that I. D. Zhongolovich [35] gives y = 1:32,000 and the
meridians of least flattening as A; = +84° and A, = -96°.

The Earth is represented as a symmetric spheroid with potential

! Actually, in both the preceding case and in this one, the same numerical

value of c20 is taken, which is determined as a rule with consideration to

powers of a higher than the first.
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(Model 1)

r,\ 75\
% =‘i[1 c <—°> P (sing)+¢ (-9-) P (sin(p)].
A=7F] *laol 7 20 ?/+laol 7 30 (5.14) °

According to §2, effects of asymmetry should be represented by the odd
zonal harmonics, the third being the highest in amplitude. The coefficient
associated with this harmonic also has the order of the square of polar flat-
tening. According to available data, the northern polar radius of the Earth
is somewhat longer than the southern polar radius. This difference is equal
to 70 meters [35]. '

When the data of [32] are used, the asymmetry factor has extremely
little effect on the motion of Earth Satellites (when coefficients determined
on the basis of more complete and more recent information as to the gravita-
tional field are used, the asymmetry factor shows up more strongly, and even
exceeds the effect of triaxiality).

The Earth is represented as a triaxial asymmetric ellipsoid with
potential (model E)

2
r .
Vg -}-:-f‘ 1+ (—0 [€g0 Pyglsin @)+(Cqq COS 2n+d 5,510 22 )P, 5 (sin @)+

o) i ") ¢ o Py (sin ) (5.15)
+ 5 € 50 P3p (sing) + — ] €50 P40 (sin @) pe .

This is the most complete model of all those considered. It gives a
better approximation of the geoid than any of the others.

Actually, expression (5.15) contains all principal terms of the expan-
sion for the gravitational potential written for n <4. The omitted tesseral
and sectoral harmonics of third and fourth degrees are small since the coef-
ficients associated with them are of order o(a?).

Each of the models constructed here may be selected as a model of the
Earth's potential in solving problems associated with satellite motion. In
this case, the selected model may be called the normal gravitational poten-
tial, while the difference between this model and the potential of the geoid
may be called the anomalous gravitational potential or gravitational anomalies.
Selection of the normal potential is determined by the problem to be formu-
lated. The accuracy of the given models is evaluated in the next chapter.
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"But are we right in assuming the
hypothesis of central forces? Is this
hypothesis strictly accurate?”

H. Poincaré

"Not one of the theories is true
to a greater extent than the map is a
true image of the country. And how
convenient to have different maps
(various scales) to study the geography
of the country, how convenient to have
several diagrams and models of nature."

J. L. Synge

Chapter Two
DISTURBED MOTION OF AN ARTIFICIAL EARTH SATELLITE

In this chapter we shall consider the disturbed motion of an artificial
Earth satellite over a time interval of no more than a few days. An analyti-
cal investigation of the orbits of circular and nearly circular satellites
is given in Appendices VI, VII and VIII, as well as an investigation of dis-
turbances in motion over a very long interval (about one hundred satellite
orbits).

The relegation of this material to the appendices is explained by the
fact that the equations used in the analysis are derived later, in the third
chapter.

§6. Description of Disturbed Motion

Disturbed motion of artificial satellites is described by differential
equations of form (0.2). The most convenient parameters for numerical and
qualitative analysis of disturbances are however, not the rectangular or any /57
other coordinates, but rather the osculating elements since each of them
directly characterizes either the geometry or the kinematics of the motion.

Several equivalent systems of osculating elements conventionally used
in celestial mechanics are known [1, 2, 3]. Each of them involves orbital
eccentricity e and angular distance of the perigee w or some other parameter
which determines the position of the perigee of the orbit.

In the case of small eccentricities, a small divisor 1/e appears in the

osculating elements on the right side of the differential equations, while
for eccentricities equal to zero, the quantity w generally becomes

51



indeterminate. This makes it difficult to describe the -osculating motion of
satellites with low orbital eccentricity.

However, new systems of osculating parameters which differ from those
assumed in classical celestial mechanics! and which are free from the given
disadvantage may be constructed on the basis of the first integrals of the
equations of motion.

We shall use here one of the possible systems of this type in which
the eccentricity and angular distance of the perigee are replaced by the two
Laplace vector components [1 - 3]q and k lying in the plane of the osculating
orbit? [46]. In this case, they are simply expressed in terms of e and w:

g = €cos w;

6.
k=esinw, (6.1)
and also readily permit the reverse transformation:
e-g2+k2; w=arcsink/e whenw = arccos g/e. (6.2)

If functions q and k are found by using numerical integration of dif-
ferential equations, it is better (in view of unavoidable computational
inaccuracy) to determine the quantity w as the arithmetical mean

6:-12—(arcsin§—+arccosg—). (6.2%)

If the functions q and k are used in the system of osculating elements, /58
there is no need for a transition to variables e and w in solving practical T
problems. However, such a transition may be advisable in studying orbits
since the latter two parameters are geometrically more graphic.

In the case of orbits with initial eccentricity equal to zero (eO = 0),
the disturbances Sw may be found from the following equations:

1 Classical celestial mechanics in this case is understood to mean the
celestial mechanics of natural heavenly bodies which has been developed over

the course of several centuries.
2 The quantities q and k are actually the components of the Laplace vector /57

divided by the constant y.
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8w = w= 7-2£N +—(;)M;
N =(1~sgn @)+ (l-sgnqsgnk)1l+sgnq);

M =sgngsgnk.

The disturbances Se in this case are determined from the first relation-

ship (6.2) (since Se = e when ey = 0).

When e # 0, disturbances §e and Sw are calculated in the form

Sw

1 .
E(coswsk ~ sin 08q);

Ge

L (rok+gaq).

The quantities e, w, q and k are taken in the instant (period) preceding
osculation, 1i.e. the values taken for these quantities are those which are
used as the reference values in computing disturbances §q and &k.

It will be possible to calculate the motion of a satellite with the
aid of variables q and k if an expression is found for them in terms of the
kinematic parameters of the orbit.

In order to derive these relationships, we write the identity for the
radial and transversal components of velocity:

Using the integral of areas [1, 2, 3] -r%M/dt=rVT=vﬂﬁ=C, we get

Since

dr

2
- %—(qsinu —kcosu),
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then

\/—gv, =gsinyd — kcosy;

\/g (V,c- 1) = gcosu+ksinu.

Here p is the focal parameter of the orbit; u is the increment in latitude
of the satellite.

q =\/§ \A sinu+(\/§ v, —l)co-su;
p : p
k=( gVT-— 1>smu - \/—;Vr cos . ]

From this system of equations we get the desired relationships:

(6.3)

Thus, if we know the initial values of the components of velocity Vr

and VT, as well as p and u, we may use (6.3) to find the initial values of

a4 and k

motion.

are written as follows:

@=R-1M§/;

dt sin 1
di _p-1_ .-
i = R cosuW;

dp ~17.

- =2

dt PRTTS

‘%’- = §sinu+[(q+cosu)R"1+cosu]"1"+ksin uRlergiW;
ad—? --S cosu+[(k+sinu)R—1+‘sinu]T—- g siny R“lctgiw,‘
g—? = Vi R? p-,/2 —'R_lctgisinuﬁ ,

R = ligcosu+ksinu, )

which are necessary for integrating the equations of disturbed

When the system of parameters @, i, p, q, k, u is used, these equations

(6.4)

The derivation of the differential equations with respect to Q, i, p

and u is given in [3] (see also [1 or 2]);the derivation of the equations
with respect to q and k is given in Appéndix V.
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The notation used here is: Q--longitude of the ascending node of the
orbit; i--inclination of the orbit (to the plane of the equator); p--focal

parameter of the orbit; u--argument of thc latitude of the satellite; t--
time of motion of the satellite;

S \Zs. T §0\/P
§ - \/:s, T=\/;T, w=\/-;w,

where S, T and W are the disturbing accelerations directed along the radius,
the normal to the radius in the plane of the orbit (the transversal) and the
normal to the plane of the orbit (the binormal),respectively.

System of differential equations (6.4) is true for any disturbing
function V(r,p,)). Components S, T and W are compared from the formulas:

\
S= a—-v'
ar’
T=lﬂcosu.. 1 oV cosi |
r cpcoscpsml'i'rcosq,a)\c()sq); (6.4")
woLldVeosi 1 4Vecosu . .
I dp cos@ Tcos@gda coscpsml‘ J

In the case where V is a disturbing potential corresponding to one of
the models b, B, [, ] or E given in §5, the components of the disturbing
acceleration have the following form:

3 2 1 . 2. .2
SB= —5 €y kT ;—4—(3$m isin‘y - 1);
Ig = 3(:201”% ;}i- sin® isinzuco‘su,‘
Wg = 3¢,0urg 2 sinicosisiny;
B=3Cyul; ;Z-sm cosisiny;
Sg=~2C,our® L (35sin® isin®u ~ 30 sin?i sin%u +3) ;
B gCa ¥ °r6 n 1n SUsin isin™ o + )
TB=§—C40p.r‘g—r%sinzisinucosu(rsinzisinzu—3);

4 e .2 .
WB=5§C40p.ror—ls—smlcoslsmu(7smzlsm2u-3);

Sp = ~9ur? % (Cyp 0527 +d,, sin 22 ) (1 — sin® i sin® u) ;
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I = 6p.rg lZ[(dnoosi =~ Coy sin?i sinu cosu)cos 2A —-
r
—(d,,sin® isinu cosu +¢,, cosi)sin 22];
. 2 1 e . .. .
WP =6urg r—‘L[(CZ.? sinicosu -d2251n1005151nu) sin2A ~
~(¢,, sinicosisiny +d22 sinicosu)cos 2a1;

S = =265 urh <5 sini sinu(5sin®isin?u - 3);

-~

TA= %530 ;Lrg - sinicosu (5sin®isin?u - 1);

3 L

Caolg =% cosi(5sin®isin®u — 1);

Wy =

pCs

—

SE= SB +SB +Sl‘ +SA,
IE = TE +Tb +T11+T!r1‘;
WE = Wb‘ +Wb» +WF+W/]\'

In the following analysis, the equations of disturbed motion are
written with respect to the argument of latitude u. In many cases this formu-
lation is preferable since it permits a geometrically graphic determination
of the satellite's period of revolution (draconic period) as the interval of
time required for the undisturbed argument of latitude to increase by the
quantity 2nl | and also makes it possible to study an orbit with an extremely
low initial eccentricity ) (including orbits with €y= 0). In this case, the

use of an angle such as the true anomaly ¢ as the angular argument is inadmis-
sible, since the angle & is reckoned from the perigee of the orbit, which

becomes indeterminate when ) is small or equal to zero. In addition, since

this transition results in the right-hand members of the equations of motion
becoming an explicit function of the argument, integration of the system is
facilitated (see Chapter Three). Transition to the argument u is accomplished
by multiplying the right-hand and left-hand members of the first five equat-
tions in system (6.4) respectively, by the quantity (see [13]):

-d_i-\/E R24 2 RSt isinul
au - “.p + m cot isinu (6.5)

1 Strictly speaking, the draconic period is defined as the time of motion
between two consecutive transits of the ascending node of the orbit [19]. In
non-Soviet literature, this period is called the nodal period [47]; [47] also
gives a comparative analysis of the various relationships derived by non-
Soviet authors for determining the disturbed draconic period.
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And by substituting equation (6.5) for the sixth equation in system (6.4). /62

In studying disturbances in the field of the various models, the gravi-
tational potential, as was pointed out above, is a function of a definite
negative order of magnitude with respect to polar flattening of the Earth.
Components S, T and W will also have the same negative order of magnitude.
After transition to the argument u, products of functions WW, WS and WT will
appear in the right-hand members of the differential equations, and as a re-
sult, the disturbing functions will contain terms with a higher negative
order of magnitude than the disturbing potential. This should be kept in
mind in proper formulation of the problem.

Specifically, with an accuracy to terms of the order of the square of
polar flattening of the Earth (inclusive), the system of equations with re-
spect to argument u is written in the form [48]:

a0 o \
du Nm sini
3
. 4 -
%‘-_ 5; R™%cosulW; +6, 1}
U
3 ,,.5/2 _ -
g%= :’/pg R°[T; +0, 1
%%: (—qsin2u+ lz—ksin Zu)cotigi—+
(ksm u——qsm2l&)coslf§Q 2p(q+cosu)—;+ |
3
% - -
+ LR‘Z[S‘, sinu+T; cosu+6,1; (6.6)
[T
ék . 2 di _
W (-—k sin u-—-2—qsm2u)<:0t1du
- (—qsin2u+-12-ksin 2u)cosla,—l—+-—(k+sxnu)%
P R™2(T, si 3 0,1
+:/_—_: [i51nu— ;CosU +6,];
___ \[_pR-z P R~ cotl&nuW
R- 1+qcosu+h=.mu. J
The subscript i in functions éi’ %i’ Wi assumes the meanings 6, B, I, 1, E, /63

i.e., S, T and W contain all terms of the projection of the disturbing force
corresponding to the given model of the potential field (beginning with terms
of the first negative order of magnitude).
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Functions 91, 65, 84 and 6, are quantities of the second negative

order of magnitude with respect to flattening of the Earth, and are defined,
as follows (the subscript 1 associated with components Sl’ T1 and W1 indicates

that these components contain terms of only the first negative order of
magnitude) :

PP s .
6, = -}-L—R ?’cotzsinqu;

~

P2.—3 -
“ RcotisinuW T, ;

<D
L]

[e}
[}

6; sinu+62msu;

. *
92 Sinl — 93 Coslu,

-
]

where

ot ~l)-2R"3cotis' u¥.§
3 =T inuW;S5;.

After substituting the values of 31, ’Tl and W , we get:

4
r . ..
- 9¢2 —9R%sinicos’i smsu;
20 5

—
|

4
r
5 . . ..
) cho —gR sinicos? i sin® ucosu;

™o
1

4
r . < . .
8y = 96220 —%Rscoszisin3u[sinl<:os2 u—?l,):(?) sinZi sin?u - 11;

4
g T .. . s . 9.
0, = 902‘0 —59 R5 cos2i sin? 4 cosu[sini sin® u(3sin?i +1) =11,
p

If the model of the gravitational field is taken as [ ,E or some other model
which describes the asymmetric nature of the Earth with respect to its axis
of rotation, terms will appear in the right-hand members of equations (6.4)
which depend on the satellite's longitude A, and the system of differential
equations should then be supplemented by an expression which takes account
of the effect which the Earth's rotation and precession of the plane have on

the amplitude of the disturbances:
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x=Q+x‘—[x°+mEarth (t-t,)1. (6.6%)

The quantity A here is the instantaneous longitude of the satellite reckoned
from the point of the vernal equinox (the point y); t is the instantaneous
time of motion of the satellite; t. is the initial instant; A0 is the Tongi-
tude of the Greenwich meridian with respect to point y at time to; Weoth

is the angular rotation of the Earth; Q is the instantaneous value of the
longitude of the ascending node.

The quantity A* is the change in longitude of the satellite (with
respect to the ascending node) resulting from its orbital motion:

sin A* = cosisinu /y/1~sin? i sinZu,

The derivation of this relationship, as well as the equation for deter-
mining A will be apparent from Fig. 2. Here, the following relationships

Plane of the
osculating orbit

Position of the
satellite
Plane of the equator

Greenwich ‘merjdan

Figure 2.

from spherical trigonometry are used:

sin A" = sindsin B (law of sines for right triangle ABC);
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sin B =cosifcos ¢ (law of cosines for the same triangle);

sin B=cosi/\/1~sin?¢ = cosi/y/1—sin?isinu.

Determination of the angle A* from the expression for arcsin A* should /65
not cause any difficulties with machine computation. The initial value of

A* is uniquely determined according to the known position of the satellite. -

This angle may be determined in the course of the computations uniquely from
its preceding value.

Perturbation of the osculating orbit is characterized by the five quan-
tities

8Q=Q-Qy, di=i—liy, 8p=p—p,, 8g=4—Gy, Sk=k-k,, (6.7)

where the functions without subscripts are the instantaneous values, while
those with a subscript are the initial values of the osculating elements.

By varying the known equations which relate the rectangular inertial
geocentric coordinates to Kepler's elements [3] (see also [l or 2]):

x
y

Z =7 sin¥sini,

it

t(cosU cos Q — sint sin Qcosi);

fi

r(cosk sin  + sind cos Q-cosi); (6.8")

we get the perturbations of the rectangular geocentric coordinates as func-
tions of the perturbations of the osculating parameters:

5% = (coskcosQ — sinu sin s2cosi) 67 —r(cosu sin Q +
+sinlcos RQcosi)8Q +7 sint sin Q sinidi;

5y=(oosu'sinQ+sinuoosﬂcosi)8r+r(cqsucos$2— (6.8)
~ sinusin Qcosi)d8Q ~rsin cos Q sini 8i;

52 = sin¥ sinidr+7 sind cosidi.

Here ér is the perturbation of the absolute value of the radius vector:

- - 5 -
6r=}r[-trﬂgarﬁ[p-p—R l(cosuﬁq-f-sinuﬁkﬂ, (6.9)
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where r,, are the values of the radius during motion in a normal field for the

H
same value of the argument u.

A graphic characteristic of the disturbed potential of the satellite

>
is the quantity Ar = |r - Tyl - Since

AT = E-1)2 +(y-y) % + (22,7,

by substituting the quantities X=Xy=0X,y=Yy=0Ys 2~Z;; =02, , we get Ar as

a function of the disturbances of the Keplerian elements of the orbit:

ar = [6r% 41l (cos? u+cos® isin®u)se? + (6.10) /66

1
+ r: sin? u6i? —2r}f sing cosu sinisis Q] % .

Functions (6.8), (6.9) and (6.10) are derived on the assumption that
the positions of the ''disturbed" and "undisturbed" satellites (i.e. the posi-
tions of the satellites during disturbed and undisturbed motion) are compared
for the same value of the argument of the latitude. Thus, the argument of
the motion is the angle u (which corresponds to formulating the system of
equations in form (6.6)). This motion may be called isogonal as distinct
from isochronous motion in which the argument is time (system (6.4)).

In deriving the expressions of 6x, 8y, 6z, &r and Ar for isochronous
motion, it would be necessary to take account of the relationship u = u(t)
and to take the partial differential of the function u with respect to t
everywhere, '

This derivation is not given here since we shall only be considering
isogonal disturbed motion. This motion may be completely characterized by
the two functions:

Ar and 8t=t—t,. (6.11)

The quantity &t is time perturbation. Thus, while function (6.10)
shows that the disturbed satellite will be located at some point on the
surface of a sphere (of radius Ar) whose center coincides with the undisturbed
satellite (the position of this satellite on the surface is not defined since
we are considering the modulus of the vectoral difference in (6.10)), function
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(6.11) shows that the satellite will arrive at this point with a time dif-
ference of 8t with respect to the instant when the undisturbed satellite will

be at the center of.the given sphere.

Functions (6.10) and (6.11) give information only on the amplitude of
the disturbances (while functions (6.7) or (6.8) describe their geometry),
therefore, in considering this particular characteristic of motion we may say
approximately that the disturbed satellite at instant ty corresponding to a

given value of the argument of latitude u = u* stays within a tube of radius
Ar and angular length Su. The quantity Su corresponds to the time &t of
motion along the orbit, while both 'ends'" of the tube are convex hemispheres
of radius Ar ( Fig. 3). The region found in this way gives a graphic evalua-
tion of the amplitude of disturbances in the motion of the satellite.

Position of the
satellite at u = u%
during motion in a
normal field

Orbit of the satellite
during motion in a
normal field

Figure 3 /67

Perturbations of the orbital elements are qualitatively different.
Since the right-hand members of equations (6.4) and (6.6) are periodic
functions of the argument, it is obvious that the functions @, i, p, q, k, t
and u must contain a periodic component with a period equal to the time of
revolution of the satellite. The nonlinearity of the right-hand members of
the equations with respect to the periodic terms indicates that these functions
represent a superposition of harmonic components, and must also contain terms
which are proportional to the various powers of the argument.

The so-called secular terms in the solutions of the equations (in
celestial mechanics they are called inequalities), increase with an increase
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in the argument!. The short-period disturbances have a period equal to the
period of revolution of the given heavenly body. The long-period disturbances
have a period greater than the period of revolution [1, 2].

Long-period disturbances appear when there is a change in the right-
hand members of the differential equations (disturbing functions) with a per-
iod greater than the period of revolution of the moving body. In the given
case of satellite motion (the disturbing function is only the eccentricity of
the Earth's field) the long-period disturbances are the consequence of two
factors: the diurnal rotation of the Earth (if the asymmetry of the Earth
with respect to the axis of rotation is considered, as for instance in models
[ and E) and rotation of the line of apsides which is directly due to a change
in functions q and k with a period of more than 2m with respect to argument u.

If satellite motion is considered on a comparatively short interval (as
for instance in the discussion below, where this interval is taken as less
than one day), then the long-period disturbances do not have time to show
their periodic nature, and show no difference from secular terms in analysis
of computational data. Therefore, it is advisable in these cases to speak
of quasi-secular disturbances (meaning that they contain both long-period and
secular components) and periodic disturbances (i.e. disturbances with a short-
period) .

In general however, the problem of the presence of secular disturb-
ances in some orbital element or another is extremely complex and may be
analytically solved only to a certain approximation. At the same time, this
problem is of definite interest since it characterizes the stability of
satellite orbits (see the papers by V. G. Demin [49, 50].

§7. Disturbances in the Elements of Orbits in the Central Gravitational
Field of the Earth

Over short intervals of satellite motion, the disturbances in the
orbital elements which are greatest in amplitude are periodic in nature.
This is due to the fact that the secular terms (see footnote in §6) in the
solutions for the equations of motion show up because of terms of a higher
negative order of magnitude which are present in the expansion of the poten-
tial. These terms may have an appreciable effect on motion only over a long
time interval. Periodic disturbances,on the other hand,are determined by
the first terms of the expansion which have coefficients with a higher abso-
lute value.

m; m;
1 In conformity with-the functions ¥ TAcos (vi+¢))+Bsin (vu+C,), which
appear in the solutions of the given equations, they are sometimes called
secular terms. In celestial mechanics, such perturbations are also sometimes
called mixed terms. The quantities n, ml, m2, Vl’ v2, Cl’ c2, A and B here
are constants.
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Periodic Disturbances

The nature and amplitude of periodic disturbances in the elements are
determined by the effect of the second zonal harmonic in the expansion of the /69
gravitational potential. Thus, motion in the field of model B is the deter-
mining factor of the qualitative and quantitative picture in all cases.

To make our analysis specific, let us assume in further discussion
that u, = 9, i.e. that the initial position of the satellite is over the
equator (at the ascending node of the orbit).

The periodic and secular disturbances of the orbital elements during
satellite motion in various models of the gravitational field are shown in
Figures 4-28. The corresponding variants are shown in Table 5.

TABLE 5 *
Initial Conditions
Alti tude
xigéz:t Q i Po» %% eo w0 Apégee Perigee

} h'A ,%x Ll an
1 0 |80° le998,00|0,0499] 0] 1000 | 300
2 0 | 63°287|6996,08|0,0489 | 0 1000 300
3 0 | 63°28°|7363,55 |0 - 1060 | 1000
4 o | 10° 7363,55 | O - 1000 | 1000
5 0 | 45° 6996,09 | 1,010 [0 - 1000

The inclination of the plane i and focal parameter p (Fig. 4, 10)
show the simplest change, close to harmonic law, in model 5. Regardless of
the values of the initial parameters of the orbit, fluctuations in these
elements have two equal maxima at values of u equal to 7/2 and 3w/2.

Considerably more complex in form are disturbances in the angular
distance of the perigee w, eccentricity e and components q and k of the
Laplace vector (Figures 5-8).

Clearly evident in the perturbation of the longitude @ of the ascending

node is the secular component which increases linearly with an increase in
angle u. Superimposed on this term is a harmonic component (Fig. 9). Similar,

but more complex in nature, is disturbance of the function tQ(uJ. The longi-

tude of the ascending node @ and inclination i do not have periodic terms for

* Tr. Note: Commas indicate decimal points.
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initial values io = /2, i.e. for polar orbits.

The function 8r{u) has a more or less pronouncéd extremum in all in-
stances which is reached in the region close to w (Figures 12 and 13).

Typically, at values of 0 < i E.“/Z’ periodic perturbations §a(u),

0
§i(u), Sp(u), &t(u) and 8r(u) are nearly always negative.
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The nature of the change in the quantity Ar(u) is easily explained by /74
the form of this function, which depends on the sum of T2, 802, and 8i2
Therefore, when io = 7/2 (in this case 6Q = éi = 0), the graph of Ar repeats

the function §r reflected with respect to the horizontal axis. In the remain-
ing instances the function ér(u) has a maximum at u = 27w corresponding to the
maximum of function §Q(u).

Up until now, we have been speaking of perturbations in elliptical
orbits. The relationship between perturbations and initial conditions (in-
cluding the initial value of eccentricity eO) is taken up, generally speaking

later on; however, even now we can mention some characteridstic singularities
in the perturbation of circular and hyperbolic orbits!

It should be noted first of all, that in the case of initial conditions
corresponding to circular motion, an osculating orbit will be elliptical;
related disturbances &e(u) will be only positive (see Fig. 5). Perturbations
of the line of f apsides are quite typical: at certain values of the initial

! Rather than the disturbance of circular orbits, it would be more accurate

to speak of perturbation of the orbits of circular satellites in the same
sense considered in Appendix VI.
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inclination (e.g. at iO = 90°), it rotates at an angular velocity greater

than the rate of satellite revolution, while at other inclinations (e.g.
i, = 63.4°), it oscillates.

As distinct from the function Sw(u) which has a discontinuity within
the interval [0,27m], the functions &q(u) and 8k(u) are continuous. This
justifies the use of these functions in studying the disturbances of orbital
elements of satellites.

The problem of disturbances of circular orbits is taken up in more
detail in Appendix VI. The approximate solutions found in the third chapter

are used there.

Thne periodic perturbations of hyperbolic orbits are basically the
same in nature as those of elliptical orbits (see Fig:. 5-11). The difference
shows up in the extremely rapid (with respect to argument u) increase in the
functions 8t(u) and §r(u) (and consequently in Ar(u)). This situation is
explained in §8. It should be kept in mind that values of the focal radius
of about 900,000 - 1,000,000 km correspond to values of the argument u = 170°
for which numerical values are given in graphs and tables. Besides, pertur-
bations in the eccentricity of hyperbolic and parabolic orbits (see Fig. 5)
are typically always negative.

%
TABLE 6
. o 2 o o - ° : S : apn®
8p, ki u = 90 5€+102; u =60 Bw; U= 80 5 u= 360 51 5t°; u=360 AT, KM
A 1 2 1 | 2 1 2 1 2 1 2 1 2 1 2

-19,71 | 15,76 | —0,1554 | ~0,1395 { -2°10"33" | ~1°22"3¢” 0 -1312" | o ~Y56” | -5,62 | ~9,23 | 9,266 | 25,203
-19,68 | —15,77 | —0,1556 | —0,1397 | -2°10"127 | —~1°22"377 0 -13710” | o -1’56" | ~5,65 { —9,25 | 98,3031 25,230
~10,92 | —16,02 | —0,1587 | —0,1430 | ~2°9°53”% | —r22726” | -1733 { —13"217 | 27,89 | —2°00”, | 6,02 | -9,65 | 9,688 | 25,581
—~19,66 { —15,74 | —0,1557 | —=0,1394 | =2°10" 8" | —1°22°33” n -13713” | 0 ~1%56" ] 5,62 | —9,24 | 9,235/ 25,293
19,83 | -16,00 | =0,1588 | -0,1431 | -2° 9" 7" | -1°22°21” | -Y733 | -13719” [ 27,89 | 27007 | —6,05 | —0,66 | 9,745 [ 25,507

I wm

Key A = Model of Gravitational Field
Note: Given in column 1 are disturbances for an orbit with the following
parameters: QO = 0; i~ w/2; wy = 0; eq = 0.0499; Py = 6,996 km (altitude

ot the apogee hA = 1,000 km, altitude of the perigee hH = 300 km). Given in

column 2 are the disturbances for an orbit with the following parameters:
Q5 = 0; io = 63°26'; wy = 0; ey = 0.499; Po = 6,996 km.

*Tr. Note: Commas indicate decimal points.
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TABLE 7 *

S

8p, se . 102 Buw ) 8i; u=90°" st

51, %X At,xx .| 8V, x/cex
Afu=90° ju-90°jualze® we120° | w1200 Jua170°| ua360° |ua170°| wop0® [ue90°|ua360°u=170° |u-180°} ua170° 1=360° {u=170° |u=180° | u=170°
1 |2 ] 1 2 | 1 21 e ] v ey |2 1] o2 e 1| 2
si_n,ﬁ;s -7,54] 0,116 |-0,0820 [180° 2728” |-11756"|-2" 20" |~1"42""| ~42] =7,74 |-428500| —8,45 |-412900 | 25,56 [412900] 8,45 | 3,31
Bl-14,49|-7,56] 0,115 |-0,0822[17¢°58" 17 | 2°28"|-11"54"|-2 "20" |- 1" 42" ~427) =7,74 |-428300} —8,46 |—413400] 25,49 1413400 8,46 | 3,31

I'}-14,73]-7,81] 0,121 |-0,0848[175°52” 3 | 27207 [~11°58”|-2" 20" |—1744" | -43"] 7,08 |-439100] 5,89 {—423400| 25,59 |423400| B,89 | 3,32
4 -14,481-7,55] 0,115 |—0,0820{176°51" 50" | 2728 |-117567|-2" 207 [-1" 42| ~42” | —7,74 |-428300 | —8,45 [-412700] 25,55 |412700} 8,46 | 3,29
E |-14,72|~7,32] 0,121 |—0,0847{175°46" 30" | 220”117 55" -2"20" | +1“44" | ~43”| —7,98 |-438700| 8,89 |-423000 25,52 [423000] 8,91 | 3,31

Key A = Model of Gravitational Field
Note: Disturbance dw in column 1 was calculated with respect to the initial

(in the sense u + 0) value w = 90° (see Appendix VI). Given in column 1 are

the disturbances for an orbit with the following parameters: QO = 0; io =
= 63°24"'; ey = 0; hA = hH = 1,000 km. Given in column 2 are the disturbances
for an orbit with the following parameters: QO = 0; iO = 45°; wy = @; ey =

= 1.010; P = 14,800 km; hH = 1,000 km.

The numerical values of the periodic disturbances of elliptical,
circular and hyperbolic orbits are given in Tables 6 and 7, and are also
apparent from the graphs.

It may be noted that the absolute values of perturbations Sr(u), Ar(u)
and 8t(u) increase in the field of model B with an increase in eccentricity
to values greater than or equal to 1. On the other hand, disturbances in the
orbital velocity are somewhat greater for circular orbits and less for hyper-
bolic orbits.

Periodic disturbances in elliptical and circular orbits in the field
of other models (B, [, 1, E) differ very slightly from those in the field of
model B. Exceptions to this rule take place only for the inclination of the
plane and the longitude of the ascending node of polar orbits, which are dis-
turbed only in models which take account of the triaxial shape of the Earth
(see Fig. 9 and 10). It may also be noted that the elements p, e and Ar(u)
in the field of an asymmetric spheroid (model /) are disturbed as strongly as
in the field of a triaxial ellipsoid (model ).

The differences in the values of functions Ar(u) and §t(u) for hyper-
bolic orbits in the field of various models reach extremely high values. For

*Tr. Note: Commas indicate decimal points.

71



instance for an orbit with an eccentricity e = 1.01 at u = 170°, these dif-
ferences are equal to 10,300 km and 10,800° for Ar and 8t respectively, (of
course, the space vehicle in this case is about 1 million km from the Earth).
This shows that an optimum approximation to the field of the geoid must be
represented by the field of the selected model when calculating motions along
hyperbolic trajectories over a comparatively large interval of variation in
the argument.

Quasisecular Disturbances

The quasisecular disturbances of all elements in the field of models b
B or J are linear (nearly linear) or equal to zero.

For instance, the focal parameter (see Fig. 17) in the field of models
6 and B undergoes slight negative perturbations (for a polar orbit with

hA = 1,000 km, hH = 300 km, 8p is no more than 0.5 meter on the tenth

revolution), and only in a field which takes account of the Earth's asymmetry
(model [ ) do these disturbances become more appreciable. For orbits with

inclination io = ia = 63.4°, perturbation §p disappear in the first two cases

( b and B ) and are extremely slight in the third ().

dp,m

Fig. 17
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This fact indicates that quasisecular disturbances of the focal para- /82
meter in the field of models £ and B is due to movement of the line of

apsides, which does not take place in orbits with 16 = 63.4°. Perturbation’

in the field of the asymmetric Earth (model [} is slight for polar orbits
and decreases rapidly with a reduction in inclination.

The same may be said of eccentricity perturbation Se in the field of
models 5, B and [ (Fig. 18).

Motion in the field of these models is typified by the absence of
quasisecular disturbances of the longitude of the ascending node in polar
orbits, the absence of quasisecular disturbances of inclination for orbits
with any inclinations, and the absence of perturbations of the line of

apsides for orbits with iO = ia (Figures 19, 22, 23). Perturbations Sw of

polar orbits and 60 of orbits with iO = 16 show very little difference in the

field of models B, B and [l. The same type of similarity is true for dis-
turbances GtQ (Fig. 24). Quasisecular disturbances of the function &r(u)

are extremely close (and low in amplitude) in the field of models G and B
(Fig. 25), noticeably greater in the field of the model which takes account
of the Earth's asymmetry (model [), and absent in the field of all three

models for orbits with iO = ia. This situation is also explained by the fact

that the line of apsides undergoes no perturbations in such orbits.

The difference between functions Ar(u) and dr(u) is due chiefly to
perturbations 62 and §i. This also explains the characteristic form of graphs

of Ar(u) for orbits with inclinations i0 = 90° and iO = is (Fig. 27).

The linear or mnearly linear nature of disturbances of orbital elements
in the analysis given above is due in a number of instances to the fact that
the purely secular and long-period components (the latter being due to rota-
tion of the line of apsides) are not separated in quasisecular disturbances,
and the movements of the satellite are considered over a short time interval
where changes in the disturbed functions are nearly linear.

The determination of purely secular variations in the orbital elements
of artificial satellites, as has already been mentioned previously, is a
complex problem which may be solved only analytically or by integration of
averaged equations (see for instance the work of V. P. Taratynova, [14]). In
particular, the absence of secular variations in the semimajor axis of the
orbits of satellites (and planets) has been proved for motion in a field of
conservative forces (to a certain approximation). Violation of this fact
would lead to an unlimited increase in the energy of motion. It may be con-
cluded from this consideration that there are no secular perturbations of /83
the focal parameter or eccentricity, which also follows from an examination
of the relationship between the semimajor axis and these parameters
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a=p/(l - e?)
assuming that a is finite.

Thus, secular disturhances affect only the angular distance of the
perigee w, the longitude of the ascending node ¢ (the latter, in particular,
causes additional disturbances in the field which takes account of the tri-
axial shape of the Earth) and the functions tQ(u).

It should be borne in mind that the monotonic increase in perturbations
|—6t9| is not associated with the continuous reduction in the draconic per-
iod. The function tg(u) corresponds to the time of motion of the satellite
0 to the current value of the argument. When u = Uy *
+ 2nm (n = 1, 2,...,), this corresponds to n revolutions, which may condition-

ally be called n draconic periods (strictly speaking, we will have draconic
periods only when uy = 0, see for instance [19]). Thus, the perturbation of

the draconic period 6T, 1is constant and is equal to the disturbance Gté at

from initial point u = u

the end of the first revolution. But the overall time of motion (reckoned
from the initial point) at the end of each n-th revolution is equal to

= _ 1
t, = n(TQ StQ ).

Disturbances of elements p, e, i, and §r(u) in a gravitational field
which takes account of the triaxiality of the geoid (models [ and E) have a
periodicity which is independent of the diurnal rotation of the Earth. The
linear component is strongly pronounced in disturbances of the function &Q(u)

of a polar orbit in a field of models [ and E (see Fig. 22), and when iO =

= 16, the periodic component in the quasisecular disturbance disappears
entirely. The functions Sw(u) and dtQ(u) also change linearly (see Figures

19 and 24).

The function Ar(u) shows an almost strictly linear increase when

iO = i6 (See Fig. 27). This is explained by the linear variation in &9 in
this case, which affects the amplitude of Ar(u) more strongly than do the

slight oscillations in &i (see Fig. 23).

The large value of quasisecular disturbances in Ar(u) for nonpolar
orbits should be noted as well as the large quasisecular disturbances in
dtg(u), and also the insignificant difference between the disturbances of

these functions in the field of various models of the gravitational field.

On these same graphs (see Fig. 17-28) are shown the quasisecular dis-
turbances of quasisecular orbits which do not differ fundamentally from the
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disturbances of elliptical orbits. The main difference lies in the fact that /84
disturbances of the focal parameter of circular orbits in the field of models
[T and E are positive rather than negative, and are low in absolute value.

The maximum quasisecular disturbances of elliptical orbits on an inter-
val of ten revolutions are given in Table 8.

TABLE 8*
| ' 4 : )

(g » 111660y * 30 ’ LR LI L .
Ay 2] 28 o 1 2 1'2 14 2 1 | 2

S I S S o ! N
E |06 | 00,0080 2°2c°127{ 0 fo [2°12°8” | 0 | 0 |50,2[¢2,4 | 25578253 KM
B 0,83| 0(0,607(0 12°257°417 {197 {0 2°11°42”1 0 | 0 155,5]¢2,5 230 mzsz km
r 219 127410,75 16,725:2°25°207 {28 7127,47[2%127247 [447 217 :153,2104,7 | 500 254
a 53| 6073 lo |2°267187) 9" o, l2°12°4” { o_j o is6,1]92,4 | seom|oss km
E 108|274 2,05 |0, 725{2°257267 | 17{2747]2°1273" |447[217 |55,5{84,8 105211} 255

1
i
i

Key A = Model of Gravitational Fielid

Note: Given in column 1 are the disturbances for an orbit with the following
parameters: Qg = 0; iO = 7/2; wy = 0; eq = 0.0499; Pg = 6,996 km (the alti-

tude of the apogee hA = 1,000 km, the altitude of the perigee hH = 300 km).

Given in column 2 are the disturbances for an orbit with the following para-
meters: Qo'= 0; io = 63°26'; wy = 0; ey = 0.0499; Po = 6,996 km.

Disturbances from Gravitational Anomalies

Since the term of the potential expansion containing harmonic on has

the principal disturbing effect, the field of a spheroid may be taken as the
normal field. In this case, the square of flattening, asymmetry of the hemi-
spheres and triaxiality of the Earth should be included with gravitational
anomalies (see Chapter One).

The periodic and quasisecular disturbances of orbital elements due to
gravitational anomalies are given in Figures 29-44. The initial parameters
of the orbits are given in Table 5.

The following notation is used on these graphs for disturbances from
anomalies: M-- disturbances from the square of flattening; K -- disturbances

*Tr. Note: Commas indicate decimal points.
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from asymmetry; [M-- disturbances from triaxiality; H-- disturbances from
the sum total of the enumerated anomalies.

Periodic disturbances of elliptical orbits due to the second power of
flattening and asymmetry of the hemispheres are characterized by the appear-
ance of upper harmonics. The effect of asymmetry on disturbances of the focal
parameter, eccentricity and line of ap51des decreases with a reduction in the
inclination. The nature of the disturbances in this case becomes more har-
monic (Fig. 29-33).

Disturbances in the longitude of the ascending node from the second
power of flattening and asymmetry are comparatively high. These disturbances
amount to several angular seconds (Fig. 34).

fpn

Fig. 29

In general, the effect of these two anomalies on periodic disturbances /100
of all parameters is identical and small. In particular, this effect does T
not exceed the following values: |sp| < 50 m; [Se| < 0.5¢107%; AT < 70 m;
|st] < 0%.,01. The effect of triaxialify is approx1mately an order of magni-
tude grea.er and leads to the appearance of harmonics similar to the funda-
mental harmonics (caused by the second zonal harmonic). All enumerated
anomalies lead to periodic disturbances of functions Ar and |§t| not exceed-
ing 500 m and 05.45, respectively (Figures 36, 38).

The maximum quasisecular dlsturbances resulting from triaxiality do
not exceed: 8p < 280 m; Se < 0.075-1073; [sw|< 25"; [s@| < 20"; [&i] < 22";

/8t/ < 2855 Ar < 280 m.
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The square of flattening chiefly affects the quasisecular motions of /100
the line of apsides and the line of nodes. They are comparable to dis-
turbances from triaxiality. Asymmetry of the hemispheres has the greatest
effect on perturbation of eccentricity (in this case reaching a value of the .
order of 10°7) and the function Ar.

On the tenth revolution, the quasisecular perturbation in Ar due to
asymmetry is equal to 500 meters, and is greater than the disturbance due to
triaxiality. Thus, if the effect of triaxiality is taken into account, and
also the asymmetry of the Earth for orbits with iO # i*, then the gravitation-

al anomalies which are disregarded over an interval of about one day will
lead to an error of Ar < 100 meters in the position of the satellite.

It should be noted that neither the square of polar flattening nor
asymmetry cause any quasisecular perturbations of the focal parameter or in-
clination of orbits with inclination i, = i* = 63.4°, that the square of
flattening for orbits with this inclination  causes no quasisecular pertur-
bations of eccentricity or the function §r(u), and that asymmetry causes no
perturbations in the ascending node.

Triaxiality leads to disturbances with a diurnal period in functions
Sp, Se, 80, 6i and ér. In orbits with inclination i0 # i*, perturbations of

this type are also typical for the function Sw(u) (Figures 39-42, 44).

The asymmetry and triaxiality of the Earth cause a strong change in
the periodic perturbations of the line of apsides at the end of the draconic
period in circular orbits. The quantity Sw may reach 80° under the effect of
each of the three anomalies. For circular orbits with an inclination close
to 63.4°, triaxiality produces a discontinuity in the function Sw and the
points u = 140° and 220°. This singularity disappears with a reduction in
the amount of inclination. However, for nearly equatorial orbits there is a /101
characteristic increase in disturbances of the function Sw(u) at the end of
the period, which is caused by triaxiality and asymmetry. For circular
orbits, large perturbations in the function ér appear at the end of the per-
jod (|ér| = 1,000 m), which is explained by the high amplitude of the long-
period oscillation (due to rotation of the Earth).

Given in Table 9 are periodic disturbances as a function of the
various gravitational anomalies.
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TABLE 9=

Circular orbits ' Hyperbolic. orbits

Po =7400 m €o=1,01;
i, =863°%4 Po =14800 im
¥ =176°
L S Ar o L iagtS
maxs lsﬂmu max’ kit lstlmu
Effect of the square
of flattening (3625'3) (()bogi()) 500 470
Effect of asymmetry of 44 0,0078 200 220
the hemispheres | (283) | (0,04)
Effect of triaxiality ' 354 0 ;;‘307 10500
of the earth (284) (0,221)
Overall effect of the 300 0,3316 | 10100 8170
anomalies (803) (0,301)

Note: Shown in parentheses are the fiqures for a circular orbit with
in= 10°.
0

§8, Effect of Orbital Parameters on Disturbances in Satellite Motion in the
Field of a Spheroid

The effect which initial orbital parameters have on perturbations is
very important in planning the orbits of artificial Earth satellites [4]. It
was shown in the preceding section that the field of a spheroid is the strong-
est factor which perturbs satellite motion. It is natural therefore, in the
given case to give separate consideration to the effect which orbital para-
meters have on disturbances in the field of a spheroid (treating it as a
normal gravitational field) and on disturbances from gravitational anomalies
[51].

Since the field of a triaxial ellipsoid has a characteristic effect on
quasisecular perturbations of a number of elements, individual attention is
also given to the effect of initial parameters on motion in this field.

Effect of Orbital Inclinations. The effect of orbital inclinations is
considered over the range of angles 0 5-i0 < /2 and is shown in Figures 45-

60 (for satellite motion in a field of model B). The corresponding variants
of initial conditions are given in Table 10.

*Tr. Note: Commas indicate decimal points.
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TABLE

10 *

Initial Parameters

Alti tude
Nurob : Apogee Perige
v:'fa:ﬁtc’f 2 | 1o Po, %# €o %o pos gee
ho, st Bpp, xu
8 0 |190° 68996,087 | 0,0489034 | B0°, 1000 | 300
7 0 |45° 60986,087 | 0,0489034 | O 1000 | 300
8 0 | 45° 8896,087 | 0,0488034 | 8¢° 100G | 300
:] O | 83°26° | 6896,087 | 0,0488034 | 8G° "10001 300
10 0 | 54°44”|68986,087 | 0,0489034 | O - 1000 | 300
11 o} 10° 8988,087 | 0,0498034 | 0 : 1006 | 800
i2 0 | 30° 89896,087 | 0,0498034 | 0 - 10007 300
13 0| 1385° 8696,087 | 0,0489034 | O 10001 300

A reduction in inclination has the strongest effect on the nature of
perturbations of the eccentricity and line of apsides by smoothing out their
oscillations (Fig. 46, 47). Rotation of the line of apgides of circular polar
orbits is replaced by oscillatory motion with a reduction in i (See Appendix
vIi).

Perturbation of the angular distance of the perigee &w in elliptical
nearly equatorial orbits is generally sinusoidal with period 27 and a certain
secular variation, while Sw(u) for circular orbits changes according to a
linear law (see Fig. 6). :

Circular orbits show a minimum in Gemax when io = 63.4°. This may be
illustrated by Fig. 5 and Table 11.
TABLE 11%
) ~Inclination ig
80° 83°%,4 45° 0°
8€max when €0=0 ] 0,001738 |0,001304 0,002470

0,001845

Fig. 45 shows that a reduction in inclination considerably reduces
perturbations of the focal parameter, which are generally equal to zero for
equatorial orbits.

* Tr. Note: Commas indicate decimal points.
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A reduction in the initial inclination of the orbit has a reverse
effect on perturbations of the line of nodes and inclination (Figures 48, 49).

With a reduction in inclination, the function ér(u) takes on the nature /108
of a negative half-wave (Fig. 51), while Armax’ as may be seen from Fig. 52,

increases considerably (at inclinations of 90°, 63.4° and 45°, the quantity

Armax is equal to 9.27, 25.29 and 40.13 km, respectively).

An increase in inclination, as may be seen from Fig. 50, results in a
considerable increase (in absolute value) in the time of satellite motion &t,
although the nature of this function does not change.

The effect of inclination on periodic perturbations of circular orbits
is shown in Figures 5-16 and in Table 12,

TABLE 12 =
Inclination ig
80° | 83°4] 45° 0°

e, =0 8p .- km | -18,12|-14,05 |- 8,08 O

- km 545 - 3,85({- 8,18~ 9,68(-15,52
Po =7378 {6Vinax,5ec | 8,08 845| 12,10 -
2, =0,0499 ;
o =0, ; s - - - -
> - 6596 m st 5,60{- 8,20 |-14,70 |~15,75

When the inclination crosses over into the second quadrant, all para-
meters of motion except Q@ and i vary in the same way as when 0 < i < /2.
The functions §Q(u) and 8i(u) in this quarter change sign, i.e. reverse
motion of the node is replaced by forward motion, and perturbations §i are
always directed toward a reduction in the angle between the plane of the
orbit and the equator (see Figures 48, 49).

Quasisecular perturbations of the focal parameter, eccentricity
(Figures 54, 55) and line of apsides (Fig. 56) pass through zero at i* = 63.4°
The perturbations of the functions &§r, 8q and 8k have a minimum at this in-
clination (Fig. 59), while disturbances of the orbital velocity &V increase
with a reduction in inclination (Fig. 60). Perturbations S8p and Se are due
to long-period oscillations caused by motion of the line of apsides. As may
be seen from the graphs, disturbances Sw are not equal to zero at the point
of the minimum. This is due to the long-period components in the quantity w.
The inclination of the orbit does mnot undergo any quasisecular disturbances
in the field of a spheroid.

Perturbations &Q(Fig. 57), 8t (Fig. 58) and Ar, just as perturbations

* Tr. Note: Commas indicate decimal points.
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8V, increase in absolute value with a reduction in inclinationl When - the

inclination enters the second quadrant, quasisecular motion of the node is in

the opposite direction. Quasisecular disturbances of the parameters are /109 |
shown as a function of inclination in Table 13. ‘

TABLE 13 *
C - - »
2 fnclination ig
“— L s
3
O —
fo B 9
5 > o
C O - 3 7 YD > -
we b 90 63°24 54°44 45 30° 10° [
- |2 -0,0556+10-7 0,0808-10-1°|. - -0,0218-10% - - -0,0223.10~5
o K { 0,0158-10—-4 0,0638-10—7 - 0,0477- 104 - - 0,0191. 10~3 ‘
& * T B
o 2 ~0,0554+10~5 -0,0112-10-3 - . 1-0,0218-10-% - -. ~0,0222.10-3
K 1 0,0158-10% 0,0618-10-6 - 0,0477+10—3 - - 1 0,0191-10~2
- 3 i-1 4-37.» I - 217 42" . - . o ”‘wwu";‘
K { ~87407 o - -15" - - -6"
LT % - it
w0 121 287117 10~ . - 3°37°4" - - - ]
K |-1°8"43" [¢] - 1°87 - - 4°4°
- 12 0 ~187127 -1772% ~20"51" | -257307 |-28"28" | -20°28” Co e
s K 0 ~11756" - -18750" - - -26°3G”
. w0~ 2 o ~2°12°4” -2250722” | -3°287°28" | -4°15"1" | -4°54"24"] —4°54"24"
K 0 -1°59" 20" ~ -3°8°20% - - - -4°2¢" "
s |1~ (2|56 ~9,23 -11,64 -14,85 -18,15 ~15,45 ~15,75
K |-3,85 ~g,18 - -9,88 - - ~15,52
sem| s~ |2 284 " 0,00 11,54 58,02 183,5 378,10 408,00
’ K | -0,201 0,00 - -0,818 - - ~g,815
31 03 75,9 98,2 120,5 k - - -
arkami 3~ ol oy 78,7 ~ 127,7 - 1681 -

Note: The perturbations of elliptical orbits are given in lines headed 3
(e0 = 0.499), while the lines headed K give the perturbations of circular

orbits. Perturbations 8w of circular orbits are considered in the left-hand
neighborhood of the point 2nm with respect to the initial (in the sense n + 0)
position of the line of gpsides.

Periodic disturbances are shown as a function of inclination in Figs.

45-53, while Figures 54-60 show the relationship between quasisecular pertur-
bations and inclination.

! Disturbance of the line of nodes in an equatorial orbit should be treated /108
as the limit approached by &Q when i + 0. o
* Tr. Note: Commas indicate decimal points.
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Effect of the Focal Parameter

An increase in the focal parameter (size of the orbit) reduces the
amplitude of periodic and quasisecular disturbances. The relationship between
periodic disturbances and the size of polar orbits is shown in Table 14 (el-
liptical orbits) and in Table 15 (circular orbits) for various values of Wy

Quasisecular perturbations at the end of the first revolution are shown
as a function of the size of polar orbits in Table 16 (elliptical orbits).

TABLE 14
po a EPais » km [08lmax * bliad [5“‘m 5ts L i » KIT (5V[ma, ""/Se_c
* KT
wom B jwo /2 fugml jopm /2| wom0 [ugml lagmm/2]uwp=0 wy /2 wg =
6639 [-20,20 {20,060 {0,149 | 0,200 |34°30°35" [~4,20 | 4,05 |-638] —o .63 7,92
9359 {-14,32 1 -1529 {0,0771) 6,101 [28°00°267]-3,50 | 3,43 |-4,83| —4,78 3,33

TABLE 15«

Po,kn’l

6678 | 7378 | 9378 | 13378 | 42378
Distance from the surface of the Earth h, km

300 1000 | 3000 7000 | 36000
8D ;s KO ~20,2  |-18,12 |-14,25 |-9,98 |[-3,15
e, - 102 0,2123| 10,1738 0,1075| 0,05276| 0,005247
] S -7,48 | —6,78 | —5,33 |-3,74 |-1,18
|8V|, ., » m/Sec | 7,73 6,03 | 3,31 | 1,36 0,08
TABLE 16*

Py, km | &P, se - 10° sw sts 8r, m
6639 | 0,244 0,2402 ~14°48"| -5,62 | ~118,4
7358 | 0,04834 | 0,0004883 | -5"00"1 -3,50 | =-42,35

*Tr. Note: Commas indicate decimal points.
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Perturbations of eccentricity e, focal radius ér, time of motion 8t,
orbital velocity 6V, and also of the functions 8q and 8k for circular orbits
at various distances from the Earth may be illustrated by the graphs appended
at the end of this section.

Effect of Initial Eccentricity

A change in initial eccentricity has a considerable effect on the form
of perturbations of eccentricity and angular distance of the perigee.

This effect on periodic disturbances of orbital elements for the case
of satellite motion in a field of model 5 is shown in Figures 61-68. The
corresponding variants of the initial conditions are given in Table 17.

TABLE 17 *
Initial Parameters
w N R
Variant 1 - Altitude
Number g | 1o | Poakm € ®g Apogee| Perigee
) hAtkIn hnnkm
14 1 0 ' 90° I(L135840“1 0 1000 | 998
15 | o | 45°| 11218 0,738 o 38000 | 100

Disturbances of the orbital elements of circular staellites during
motion in a field of model B are shown in Figures 69-75. The corresponding
variants of initial conditions are given in Table 18.

At large, eys the function de(u) is negative and comparatively mono-
tonic in nature (Fig. 62). When e, = 0, the function de(u) becomes positive,
and shows three clearly pronounced half-waves over the draconic period (see
Fig. 69). As the eccentricity decreases, there is somewhat of an increase

in the quantity lde]max. For instance, for orbits with approximately ident-

ical focal parameters and eccentricities respectively equal to 0.002677 and
0, the quantity»|6e|max is equal to 0.00149 and 0.00165.

A variation in eccentricity has a still more appreciable effect on the
periodic perturbations of the line of apsides. The comparatively smooth be-
"havior of the function Sw(u) for an orbit with high eccentricity loses its
monotonic character and becomes more and more oscillatory in nature (see Fig.
63). This effect is considerably more noticeable with an increase in

*Tr. Note: Commas indicate decimal points.
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TABLE 18 *

Initial Parameters

Altitutde

Py » km €q Apogee | Perigee
ha,km | by, km

0 300 | 300
7363,553 | O 1000 | 1000
9363,533 | O 3000 | 3000
7363,5853 { O 1600 | 1000

0

o

Q,

Vartant
Number

O
=

16
17
18
18
20
21
22

66E3,583

7363,833 1006 | 1000
7383,553 1300 1 1000
6956,087 04938034 1600 | 800

OCOO0OO0OO0O0O0

Note: The change in Sw for variants 21 and 22 should be taken in the
limiting sense (io > 0).

inclination. As eccentricity decreases, the oscillatory nature of the func-
tion Sw(u) becomes more pronounced, the amplitude increasing until finally,
when e, = 0, the line of apsides of polar orbits begins to rotate at an

average velocity 2.5 times as great as the rate of satellite revolution (see
Fig. 70). The sinusoidal (with a slight secular drift) function dw(u) for
equatorial eliptical orbits is transformed to the usual linear function Sw(u)
for circular equatorial orbits (see Fig. 70).

Naturally, the described behavior of the relationship Sdw(u) gives an
increase in ldwlmax with a reduction in e. For parabolic and hyperbolic or-
bits, perturbation Idw[max < 2.5'". For orbits with moderate eccentricities

= 0.0499, p, = 6,996 km), perturbation !éw[max = 2°10'; for orbits with

= 0.00376, p, = 6,640 km, perturbation ldwlmax = 34°.30.5'; for circular

/114

orbits, as we have seen, the line of apsides generally begins to rotate.

Perturbations of the line of nodes 8Q(u) and inclination &i(u) change
only slightly with a variation in eccentricity. As shown by Figures 64 and
65, there is a reduction in the oscillatory behavior of perturbations in com-
ponents of the Laplace vector dq(u) and &k(u) with an increase in ey-

An increase in eccentricity leads to some smoothing of perturbations
of the focal parameter ép(u) and inclination $§i(u), changes the form of the
function &t (u) somewhat (Fig. 66), and raises the value of Iatlmax'

I L T S S A S T S T A T i




Scale of

§ ¥

Var. 14 §




S

/_rn.
\“-----—--—---’—-———- - v - ———

Fig.64

]
]
!
1
]
'
}
1
1
)
)
2]
\
\
1
1
)
|
I
]
1
t
]
]
!
!
1
]
]
1
)
\
\

§ 01 Xep
JO 97BOg




#
0 30 200 /50
N 2 oo Pt T
\\\\ ‘/”
\“ ’,’
L Pid 4
-501}-5 D WP Y S - 7
~100 § <10
[
o ©
—t
®
— -
o
O o
v >
Fig. 67
sy S¢c
5
o K1 102 £50 200 257
e
5

Fig. 68

For instance, for orbits with eccentricities 0, 0.735 and 1.0, these 120
disturbances are equal to 95.68, -2255.7 and -51,3205 (the latter value at
u = 170°); for orbits with identical values of Py = 6,700 km, these distur-
bances come to -4>.04 and -5°.60.

A reduction in eccentricity also leads to an increase in disturbances

of the focal radius (Fig. 67), which are especially noticeable for orbits
with o Z 1.

The increase in perturbations 8t(u) and ér(u) in orbits with extremely

high eccentricities is due to the face that the values of the functions t(u)
and r(u) themselves are high in this case.
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Not only is there an increase in the value of the perturbation § r, but

in the relative quantity iégl as well. This is shown in Table 19,
max
TABLE 19%
Po,k:'m
7378 | 6986 11218 14730 18400
€ 0,000 | 0,0489 0,735 1,000 1,500
|st|S__ |9.,88 - 225,70 51320,00 -
5 x| — 000287 o0,00477 0,0300 | 0,0573

*Tr. Note: Commas indicate decimal points.
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The perturbation of the orbital velocity lév,max (Figures 68, 75) is
somewhat greater for circular than for elliptical orbits: |<“>V|max = 7.73 m/sec
when ey = 0; Idv[max = 7.55 m/sec when ey
=~ 6,400 km. In general, however, |6Vl

< 0.735.

0.0499; in both cases, Py *

12.2 m/sec in the interval

{A

max

0 2 &

A reduction in eccentricity leads to a considerable increase in the
quasisecular perturbations of eccentricity and the line of apsides. The
quasisecular perturbations of the line of apsides, at the end of the first
revolution are shown in Table 20.

TABLE 20
2o 0,735 0,0499 0,0003388
Bw 8'38" 21’42" 28’24”
TABLE 21
&g Do, km sts 8T, m
0,1685 7788 -10,11 5,760
00,0489 8858 - 5,62 2,890
0,00378 8639 - 0,234
0,0010869 9354 - 8,45 -
0,0003396 7361 - 3,88 -
0,0000000 7400 - 3,85 0,022

This governing principle is violated on circular orbits, for which the /121
secular perturbation Sw cannot be determined because of the indeterminacy of
w at points 2nm (see Appendix VI). Quasisecular perturbations &r and &t
(Table 21) decrease with a reduction in eccentricity, which is explained, as
in the case of periodic disturbances, by a reduction in the values of the
quantities &r(u) and &t(u).

Effect of the Position of the Perigee (0 < w, < m)

0
The position of the perigee has its strongest effect on perturbations

of the eccentricity and the line of apsides (see Figures 46, 47). As 9 is

varied over the given interval, periodic perturbations Se change in the fourth

* Tr. Note: Commas indicate decimal points.
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decimal place (when 0.0027 < € < 0.11). As wg increases, perturbations in

Sw become less oscillatoéry and shift into the upper half-plane.

The effect of the quantity W on disturbances of the line of apsides
Sw(u) is strongly dependent on inclination and eccentricity, increasing with
a reduction in iO and ey-

The position of the perigee has almost no effect on the form of per-
iodic disturbances of the remaining functions. Perturbations 8p(w) and
§i(w) are equal at the ends of the interval [0,n/2] and have a shallow maxi-
mum at the point Wy = n/2. In this interval, the change in law'max is no

greater than 3'"; The variation in |8 is given in Table 22. Also shown
Plpax

there is the reduction in periodic perturbations 8t, 8r and 8V (see Figures
50, 51, 53) with an increase in the angular distance of the perigee.

TABLE 22 =

ig=90°% eq = 0,0499 1o =45% € -0,0489 | ig =90°; ¢ = 0,002677
po - 6996kIM . Po = 6996 km Po = 9359

$ s b
lGPhﬁ; ot e lSFIaﬂ- g;/l/,,;gs lbf(lx‘ﬂ"' 18t s laﬁ'ﬁ‘?" lﬁPm, st |5fhﬁ-

6 19,71 5,60 8,00 7,56 9,84 14,60 | 14,88 | 14,32 | 3,50 4,83
45°( 20,20 5,14 5,17 6,72 9,90 14,42 | 15,00 | 15,29 | 3,48 4,78
90°} 19,71 4,00 5,55 5,99 9,84 13,85 | 13,86 - - -

“o

As the quantity w, passes into the second quadrant, the perturbation of

eccentricity Se(w) changes sign, while disturbances in the angular distance
of the perigee Sw(w) and in the time of motion ét(w) altexr their values
somewhat (e.g. lst[max changes by about 05.9). Perturbations of the quantities

sp(w), 62(w) and 6i(w) are symmetric with respect to the axis wy = /2.

Quasisecular disturbances of all functions, with the exception of &t
and &Q, increase (in absolute value) with an increase in Wo in the interval

[0,n/2].
Perturbation 8t in this case decreases, while 62 remains unchanged. /122

All this is shown in Table 23, where the values of the quasisecular perturb-
ances at the end of the tenth revolution are given.

% Tr. Note: Commas indicate decimal points.
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Note:
‘o

The numeral
= 90°; e

TABLE 23 *

wg="0° wo= 45° wg = 90°

A 1 -0,58 +18,71 ~24,27

ekm 2 -0,62 -14,34 -20,74
03] 1 0 0,01676 0,01870
se-10% o ~0,0480 -0,0582
S 1 2606 117 ~2°26748" ~2°27 785"
2 3°37°4” 3°38742” 39417857

s 1 =56,18 51,41 =40,50

ot 2 ~146,48 ~144,40 -139,70

— i 282,3 ~g669 14983

87, m 2 644,40 15333 20547

indicates an orbit with the following parameters:
= 0.0499; Py = 6,996 km. The numeral 2 indicates an orbit with

the following parameters:

iO = 45°; e =

0

0.0499; Py = 6,996 km.

The analysis given above may be generalized in the form of the graphs
given in Figures 78-86 which show the effect of initial parameters on pertur-
bations of orbital elements for satellite motion in the gravitational field
of a spheroid.

§9.

Gravitational Anomalies

Gravitational anomalies are taken as those described in

Effect of Orbit Parameters on Disturbances of Satellite Motion due to

§5 and §7,

acting on a satellite moving in the field of the terrestrial spheroid.

The effect of initial conditions on periodic and quasisecular pertur-
bations of orbital elements due to gravitational anomalies is shown in

Figures 87-94.

The corresponding variants of initial conditions are given in

Table 24.
TABLE 24*
Variant Inftial Parameters
Number T
1% | Por xm L wolto |Bas kmiP km
23 0 | 80°) 77886,10 | 0,1885 0 10} 3000 300
24 0 | 90°| ©358,49 | 0,0026877 {0 | O | 3000 { 2850
* Tr, Note: Commas indicate decimal points.
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Effect of Inclination on
Periodic Di sturbances

s inclination is reduced
from 90° to 63.4°, perturbations of
the focal parameter from the square
of flattening increase somewhat,
and then decrease as the inclina-
tion is further reduced. Disturb-
ances of the focal parameter &p
due to asymmetry decrease mono-
tonically, while perturbations
from triaxiality and the overall
effect of anomalies increase.

A change in inclinations has
the strongest effect on perturba-
tions ép from triaxiality (and
from the sum total of anomalies,
which change by about 200 meters as
the inclination is varied over the
range [0,n/2].

Eccentricity perturbations
from each of the anomalies indivi-
dually increase with a reduction
in the inclination. Perturbations
from the sum total of the anomalies

have a shallow minimum at iO =

= 63.4°, A change in inclination
has the strongest effect on perturbations of eccentricity from tr%axiality and
from the sum total of the anomalies, which do not exceed 0.04-10", /129

Disturbances in the motion of the line of gpsides decrease with a re-
duction in inclination from 90° to 63.4°. The greatest change results from
the effect of the square of flattening and asymmetry, and reaches a value of
30" -35".

Disturbances from gravitational anomalies in the longitude of the
ascending node increase with a reduction in inclination. Decreased inclina-
tion has its strongest effect on perturbations from the sum total of the ano-
malies (change in perturbations §Q by about 13'.5).

Perturbations of orbital inclination due to anomalies have a maximum
at i, = 63.4°, Disturbances in the inclination of equatorial orbits from over-
all anomalies are not equal to zero, but reach an amplitude of 1"-1.5",

As the inclination decreases, there is an increase in perturbations of
the function 8t due to the square of flattening and asymmetry. Perturbations




due to triaxiality and the sum total of the anomalies have a maximum at io =

= 63.4° where the value of |8t| increases by about 05.2. Perturbations Sr

or in all cases have a minimum at iO = 63.4° (the value of |6r| decreases by

about 500 meters). The same thing applies to the function Ar. However, the
minimum in this case is not so pronounced for perturbation from all anomalies,
with the exception of perturbations from triaxiality. In the latter case,

perturbations Ar when iO = 0 are not as great as when ia = 63.4°, in view of

the pronounced maximum of the function 8i at an inclination of 63.4°.

Effect of Inclination on Quasisecular Discturbances

Quasisecular disturbances §p have a maximum when io = ia = 63.4° in

all cases except for disturbances from asymmetry, where disturbances of the
parameter increase with a reduction in inclination. At the same time, per-
turbations increase for eccentricity and the longitude of the ascending node.

Perturbations of the line of apsides have a minimum at io = ia, while dis-

turbances of the inclination from triaxiality and overall anomalies show a
maximum at the same value of inclination (disturbances from the square of
flattening and asymmetry are equal to zero at all inclinations).

Perturbations of the functions §t due to the square of flattening and

asymmetry have a minimum at iO = ia, while disturbances from triaxiality and

overall anomalies have a maximum at this same point. The change in §t from

these anomalies may reach 3° with a change in inclination over the interval
[0,7/2]. The same thing applies to the function 8r, which may change by as /130
much as 700 meters. The function Ar has a minimum at iO = 63.4°.

Effect of Eccentricity on Periodic Perturbations

Perturbations of the focal parameter §p and eccentricity &e due to
anomalies decrease in all cases with a reduction in eccentricity. The maximum
change in |¢p| and |§e| reaches several meters and 0.4+10-5, respectively,

as the eccentricity is varied over the range 0 < e, < 0.05. Perturbations of

0
the line of apsides &w increase appreciably with a reduction in eccentricity,
particularly perturbations from triaxiality, asymmetry and overall anomalies
(by about 75°). Perturbations in the inclination due to the square of flat-
tening and asymmetry increase with a reduction in eccentricity. Disturbances
of the inclination due to triaxiality do not change with a variation in
eccentricity. The effect of anomalies on perturbations in the longitude of
the ascending node as well as in the function &t and 8r decreases with a
reduction in eccentricity (by no more than 05.1 and 100 meters, respectively,
for the last two functions).

124




Effect of Eccentricity on Quasisecular Disturbances

The effect of anomalies on disturbances in the focal parameter, the
line of apsides and eccentricity increases with a reduction in eccentricity.
Perturbations of the inclination due to the square of flattening and tri-
axiality increase, while those due to overall anomalies decrease. Perturba-
tions in the line of nodes in these cases hehave inversely.

The inclination, longitude of the ascending node and function &t do
not undergo any quasisecular perturbations due to asymmetry of the hemispheres.
In the remaining cases, perturbations of §t, just as perturbations of §r,
increase with a reduction in eccentricity.

By the end of the tenth revolution, the greatest changes (for 0 < e _ =<
<0.05) in the functions &t and ér are from triaxiality and overall ano- 0
malies. These changes do not exceed 15 and 1,200 meters, respectively, in
absolute value,

The effect which the angular distance of the perigee has on periodic
disturbances due to gravitational anomalies shows up in a change in pertur-
bations of the focal parameter 8p and radius Sr by about 300 meters as well
as in a change in perturbations of time &t by about 05.2.

For quasisecular disturbances, this effect shows up in a change in
perturbations of the radius 8r by about 50 meters, perturbations of the time /131
of motion 8t by about 15.5, and in a change in perturbations of the longitude
of the ascending node @ and inclination §i by about 9'" (all indicated values
are reached at the end of the tenth revolution).

The effect which inclination, eccentricity and the angular distance of
the perigee have on the maximum (in absolute value) periodic disturbances is
shown in Tables 25, 26 and 27, respectively, while the effect of these ele-
ments on quasisecular perturbations is shown in Tables 28, 29 and 30.

The numerals I, II, III and IV in Table 25 designate orbits having
the following initial parameters:

I -~ ip=90> wp=0; Py =6996 km;
I - l‘0=63:,4; wg =0; Pg =B998 km;
”]' - !o=63°,4; Po =7400 kin;
IV - i,=10° Py = 7400 km;

The result of comparison of the perturbations of orbits I-II and ITI- /132
IV characterizes the effect which changes in inclination have on perturbations
in elliptical and circular orbits due to anomalies.

125




TABLE 25 *

lopl, mi[5¢[-105] 15w| [lse] [1sil 545 [larl,m]arm
Perturbations from the square of flattening
B Il 27 0 40” - - - 47 -
€0=0.05| 1| 30 | 0,37/8" 2” ' - lo,01 - | -
e -o |HI} 23,5 | 0,24/42747 [1781 27,75 [0,004 | 12,37 85
0 Ivi 3,20| 0,87!20” g” 10725 lo,04 48 {323
Perturbations from triaxiality
e. -0.05| 1220 6,5 | 1’30” - - 0,24 580 -
0~ PPl 11250 6,7 | 110”1975 (3~ .42 1530 -
e -0 |HI[248 6,3 72°7'10’J3",75 3 33 [473 354
0 IV }408 10,3 184°5°15”17%5 |07,8410,22 957 {284

Perturbations from asymmetry

€0 ~ 0.05 1| 47 0 25" - - | - 45 | -

0 = 0,05} 1| 23 0,30| 15" 17,8 |0 0,008 - | -
e -o (I 18 0,27 74°77 | 17511 2%75[0,0078] 6,4 44
0 Ivi 10,5 | 0,30{ 14°5’ 8” 107,83{0,04 23 | 283

Perturbations from the sum total of the anomalies

1{ 230 | 7,5126” - - | 0,28 820 | 930

€y =0,05) 1} .270 | 701117~ 77 13~ 0,42 550 | -
e o || 233 | 65 F2°7'26' 1”,86/3% 10,33 473 | 300
0 vl 420 8,9 |95°00"34"] 187,5] 1722] 0,30 808 { 803

TABLE 26™

15pl, dloe- 0% 8| {{o%| | (8] | |8t]° | {6, m|arm

Perturbations from the square of flattening

1| 80 |0,037|8" 2~ |o 0,010 -
Il | 23,5/0,024]4214” |[17,81]2%75]0,004| 12,3] 65

Perturbations from triaxiality

{250 {0,867 |17107 87,5 |3~ 0,42 |B30 -
1] {248 |0,83 {72°7107|3% 753" 0,33 (473 [354

Perturbations from asymmetry

'} 23 }0,030}15” 1,8 |0 0,008f — | -~
| 18 }0,027{74°T 17,5112%,75| 0,008} 8,4| 44

Perturbations from the sum total of the anomalies

1 {261 lo,85 {117 |7 |3 0,4201550 ~
11 {253 |0,65 |82°726%{1%,88]3” |0,332|473 |300

%Tr, Note: Commas indicate decimal points.
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The numeral 1 in Table 26 designates an orbit with parameters
0= 0.05, wy = 0, Py = 6,996 km, iO = 63.4°, while the numeral II indicates

parameters e, = 0, py = 7,400 km, i, = 63.4°.

e

A comparison of variants I and II shows the effect which a change in
eccentricity has on disturbance due to gravitational anomalies.

TABLE 27*
18Ph m | loel=10% | {8w) | 18t]S | |87l,m | Al
i =80° I 230 0,75 17268~ 0,28 620 890
0 i] 220 0,50 8” 0,43 600 -
i = 45° i 27 0,80 18 G,18 780 -
Y I 80 a,80 3’ 0,30 450 -

Given in Table 27 are perturbations in the orbital parameters from the
sum total of the anomdlies. The numerals I, II and III designate orbits
with parameters:

.1 —e3=0,05 wg=0; Ppg =8908 kny
1 -ey=0,05 wy=90°% py = 6996 :km;
Il -e,=0,05 wy =45° p, =8888 km;

The result of comparison shows the effect which a change in the angular
distance of the perigee has on perturbation from gravitational anomalies at /133
various inclinations of the orbit.

In Tables 28 and 29, the disturbances of elliptical orbits are con-
sidered over a period of 10 revolutions, while those of circular orbits are
considered over 5 revolutions. The maximum absolute values of the perturba-
tions are indicated in all cases.

The numerals I, II, III and IV in Table 28 designates orbits with the
following parameters:

I - E.O =80% wq =0; Po = 6996 km;
I - i, =63:,4; wg =0; pPo = 8898 km;
IH - 1p =6'3°,4; Po = 7400 ym;
IV -~ 14=10%; Po =7400 i,

*Tr. Note: Commas indicate decimal points.

127




TABLE 28%

{oplim | |se|- 163 |6w|| [sei |8i | [sy®| [sr{,®™  Ar, m
Perturbations from the square of flattening
e, =0,05 i - - 30" - - 0,338 - -
0 I - - 287 21" | ~ | - —_—
e, =0 m| 0,0083]0,33-10-4] - [9%°5]0 0,021 0,0083] 310
Iv{ o0,0080/0,86-10-3} - |48~ |0 0.430 0,3400l 1616
Perturbations from triaxiality
e. =0,05 ]| I - - 287) - ~ 2,058} 180,77 --
°o_ 111274 0,073 20721 |217-|2,38 | 200,00 -
e =0 111 ] 808 0,075 - |47 275} 3,23 [1355,00 144
0 vy 71 0,15 - 18" }8%1710,36 |1340,00 300
Perturbations from asymmetry
e, =005 I - - 8" | - - | - | 551,000 --
0 11 - 0,154-10~% 17 |0 -~ - - -
ey =0 fli| 0,0078]0,87-10-% | - |0O 0 0,00 0,938 3
IV ] ©,4120{0,00278 - o 0 0,01 | 165,000 10
Perturbations from the sum total of the anomalies
1 - - 48" - -~ 12,34 | 885,3 -
e, =0,08 : s
0o =0 i1 1274 0,0724 g,3{117 |217 i2,48 | 1990 -
¢y, =0 111 [ 808 0,0748 -~ |7°,62]25%4]3,21 }1355,0 263
v 72 0,142 -~ 184" |374 jo,12 [1274,0 1881

Comparison by pairs of the disturbances of orbits I and II, and also
those of orbits III and IV shows the effect which inclination has on quasi~
secular perturbations from anomalies for elliptical and circular orbits,
respectively.

The numerals I and II in Table 29 designate orbits with the following
_ parameters: ‘

1 - €q=0,05; wg =0; Do = 699Bkmy 1o =83%4;
I ~ep=0; py =7400 ks ig = 83°4.
A comparison of these data reveals the effect of eccentricity on the

quasisecular disturbances from gravitational anomalies.

[ Table 30 summarizes the disturbances of the orbital parameters from the
| sum total of the anomalies. The numerals I, II, and III denote orbits with
| the following parameters: _ '
I - &g =0,05; w(}:O; Pg = 6896 km;

4 II - e =0,05; w,=80% p, =6998 km;
‘[ H - eg =0,05; wy =45% p, =6898ym;

A comparison of these perturbations shows how a change in the angular
distance of the perigee affects perturbations from anomalies at various in-
clinations of the orbit.

* Tr. Note: Commas indicate decimal points.




TABLE 29*

(5Pl | loel-10% | joul | jooi] jeif| (o115 jer|m Jar,m
Perturbations from the square of flattening
I -~ - 28”7 217 | - - - -
Ii 0,0083{ 0,33%x10-3, — |0 8751 0,021 0,00831310
Perturbations from triaxiality
1274 0,73 207 |21 [217]2,38 200 -
I | 24€ 0,75 - 14”7 128”}3,23 1355 144

Perturbations from asymmetry
I 0,0015 1”7 |0 - - - -
0

I1 0,0073(0,0272 - 8] 0 0,939 3
Perturbations from the sum total of the anomalies
274 0,72 831117217} 2,48 199 -
i1 | 248 0,75 ~ |177,68]257| 3,21 1355 283
TABLE 30%*

[8pl,m| |6el-10%] |sw| |[laql}isi|| |8t]S [{6r],far, m

- - 48 07 |0 12,340 885 | 885
[11183,7 | 0,05118 | 7°30™|2” {447|1,847 | 812 | -
889,8 | 0,32400 | 3°357;18”18” 10,385 | 732 | 315
111{608,3]0,32000 | 3734™|8” |14”}1,858 | 772 | —

i, =80°

]

io =45°

§10. Effect of Orbit Parameters on Disturbances of Satellite 'Motion in the
Field of a Triaxial Ellipsoid

A change in the position of the line of nodes has the strongest effect
on the amplitude and form of periodic disturbances in the field of a triaxial
ellipsoid (see Figures 95-106 and Table 31).

The nature of functions dp, de, &t, &r and Sw changes comparatively
little. As the longitude Q@ of the ascending node increases, there is some-
what of an increase in the absolute value of the first four functions, and a
more appreciable increase in Sw. The change in perturbations of the para-
meters of motion with a change in the longitude of the ascending node over

/135

* Tr. Note: Commas indicate decimal points.
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TABLE 31%

. Initial Parameters

Yariant

Number QO iO po,km 56 woily hA,kIn hn, km
1y 0 ©0° | 6988 | 0,0499 {0 | O} 1000 | 300
ir, 45°| 80°{ 8898 | 0,0489 |G {0 1600 | 300
1y 80° ] 80° | 6986 | 0,0489 101 0 1000 1 300

|A

the range 0 < @, < n/2 is limited to the values: |& p| <0.7 km; |&e]
o= = max max
< 0.11-10 3 lémlmax < 24'.,5 (the last inequality is written for ey = 0.004;
it increases with a reduction in e; and i ); |si| <18"; |sa] <e6"; |st] <
< 0%.82; |ér|< 0.95.

The nature of perturbations in the inclination of the orbit and in the
Ioneitude of the ascending node is most strongly affected by a change in Q.
(see Figures 95 and 96).

Shown in Figures 99-101 are the maximum disturbances in the parameters
of a polar orbit as a function of the longitude of the ascending node. The
periodic perturbations in the inclination of a polar orbit during motion in
the field of an ellipsoid may be close to zero at some Qg

The effect which the initial orbital parameters have on periodic dis-
turbances of the elements at various values of Q¢ is shown in Table 32, where
the figures represent the greatest change in disturbances of the corresponding
parameter as , is varied over the interval [0,rn/2].

The numerals I, 1II, III and IV in Table 32 designate orbits having the
following parameters:

I —ip=m/2; po=6998km ¢, =0,0488; wy =0;
I - iy =n/2; py = 6996 kmie =0,0498; wy =7/2;
I ~ iy =w/4; py ~ 6896 kmie, =0,0499; wgy =0;

IV =iy =m/4; py ~ 6839 km;e, =0,003765;wy = 0.
As may be seen from Table 32, a change in parameters Wes € and i0
mainly affects the relationship between the longitude of the ascending node /136

and perturbations of the function dw, and in part de. This effect is extreme-
ly small for functions Ar and 8t (particularly for polar orbits). Thus, for

the change indicated in Table 32 for parameters Wwgs> ©gs io and QO’ short-period

* Tr. Note: Commas indicate decimal points.
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TABLE 327

1 i 11 1V
15pi_, .km 0,500 0,423 0,448 0,420
jsef ., +10° 0,066 0,018 0,114 0,150
Bw] 8’ 22” 417" 18733~ | 24733~
5] - - 4 o
182 ax - - 1" 0
se3 0,800 0,750 - 0,780
forf .o km 0,800 0,762 - 0,800

disturbances Ar and |[&t] will differ by no more than 300 meters and
max max

0°.05, respectively.

Quasisecular disturbances of the elements ép, Se, 8i and &2 (which
undergo diurnal long-period oscillations, as was pointed out in §8) are
symmetric with respect to the horizontal axis (the axis of the number of rev-
olutions of the satellite n) with a variation in Q, over the interval [0,n/2].
Within this interval, the maximum values of the quantities |ép|, |§e| and
|31} are lower, and that of |&2] is higher, than at the ends of the interval.
For the given change in 3, the maximum changes in garameters do not exceed
the following values: [Gp? < 730 m; |Se| < 0.16-1073; [Sw] < 5'.2; [sa] <
< 22", léil <2 ldt[ < 3%.45 (the last inequality is written for an eccen-

tricity e, = 0.003765; the given value of §t is attained at the end of the

0
tenth revolution).

Thus the maximum possible overall (quasisecular and periodic) devia-
tions of the elements of the orbit with a variation in the longitude of the
ascending node in the field of a triaxial ellipsoid do not exceed the follow-
ing values: |8p| < 1.5 km; |Se|l < 0.27-1073; |sw] < 30'; |82} < 28"; |si] <
< 2'.3; |8t| < 45.3 (the last value is attained at the end of the tenth revo-
lution, as was pointed out above); |[ér| < 1.6 km.

Shown in Table 33 is the effect of orbital parameters on the relation-
ship between quasisecular perturbations of the dements and variation of the
longitude of the ascending node in the field of a triaxial ellipsoid.

* Tr. Note: Commas indicate decimal points.
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TABLE 33 *

I If 1 v
t8pl, km 0,673 1,147 0,420 0,428
[se}- 108 0,103 0,095 0,57 0,15
| ] 320" 5722”7 50” 5714"
| 51} 13" 28" 5 8”
|82 28~ 10” 40" 17427
|8t} 0,9 3,37 4,0 3,45
1871, wm 0,183 1,680 0,500 0,540

The numerals I, II, III and IV in Table 33 designate orbits with the
following parameters:

I - io = 7\2/4., po = 8596 m;eo =",0,0499; wg = O; *
H -ig=m/4; py=6996 kme, =0,0499; wg =n/4;
I - iy=m/2; p, = 8996 kmse, = 0,0489; wy =0;
IV - iy =w/2; py = 6639 kmigy =0,003765; wy = O.

As may be seen, the position of the perigee, inclination of the orbit
and amount of eccentricity have a strong effect on the relationship between
Q¢ and perturbations of the line of apsides Sw. The position of the perigee,
in addition, has a strong effect on perturbations of the functions &t and ér,
and orbital inclination has a strong effect on perturbation of the function
st.

A change in the inclination of the orbit does not basically change the
nature of the perturbations of parameters for elliptical motion. The result-
ant difference in the amplitudes of the disturbances is limited to the fol-
lowing figures (for a range of variation in inclination 45° 5-i0 < 90°):

|8p] < 150 m;|6e| < 0.6-107%; |sw| < 50"; [8] < 5"; |si| < 17"; |st|< 0°.5;
|ér] < 0.5 km.

As was pointed out above, long-period perturbations due to diurnal ro-
tation of the Earth show up in quasisecular disturbances of a number of para-
meters. As the inclination is reduced, the amplitude of oscillations of this
type in the focal parameter increases!, while the amplitude of oscillations
in the inclination decreases. The amplitude of long-period oscillations of
the functions Se and 8r and quasisecular perturbations of the line of apsides
have a maximum at i, = 63.4°.
1 In the field of a triaxial ellipsoid, the diurnal motion of the Earth has a /142
greater effect on long-period disturbances of the focal parameter than motion
of the line of apsides. Therefore, the nature of the change in long-period

perturbations with a change in inclination in the given case is not the same
as in the field of a spheroid.
* Commas indicate decimal points.
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The effect of inclination on short-period perturbations of some para-
meters is shown in Table 34.

TABLE 34%
Model Inclination ‘
A ig = 96° i5=63%4 ig =45°
5 B | -18,71 -15,76 -8, 84
5p €0 =0,0488) . | _ig a3 -16,00 -10,10
min® km B [ ~-18,12 ~14,48 -8,08
€g =0,0000| 2 " 1472 -
. 102 ~ B -0,09110| -0,1280 ~0,1820
se- 107 1e,=0,0488 - | _'0ggsg| -0.1348 | -0,1875
-180° - B 0,17380 0,1161 0,1846
u=18 eo =0,0000 - ' 0.1212 -
B 2°g°53” | 1°22°38” 10712”
lswlmax 60 =0,0499 E 209 r7ﬂ 1022’ 21" 9155”
B 0 -187 1Y -20°51%
sn in co =0,0499 E _1:"33 __131190 _20;5419
m B 0 -117568" | ~18"507
€, =0,0000] 2 - _“,55: ) a
B o 217" D]  ~27 257
5i ] [ 0 *O, 0499 E 2"9 __2loorl I) __2r 27”
min — y 2 r. 4 - Y w4
¢o =0,0000 D | 2 ., 217
~ B -5,8 -8,20 ~14,70
oS €0=00498 ¢ | _go5 -9,86 | ~14,74
min e,=0,00000 B | -8,85 -1,74 ~5,88
E - -7,88 -
B | -8,27 ~10,88 =14,78
— € =0,0489 | _g'us ~11,50 -14,57
min? b -8,80 —8,49 =12,10
€, =0,0000 2 > 804 .
i B 8,27 25,253 40,126
AL =0,0488 o 8,27 25,507 -
Al B = 25,56 =

The letters b and E

field described in §6.

during motion in a spheroidal field.

correspond to the two models of the gravitational

A change in eccentricity during motion in the field of a triaxial el-
lipsoid has the same effect on periodic and quasisecular disturbances as
Periodic perturbation of the line of
apsides Sw undergoes the strongest change (an increase) with a reduction in

1) 3

0

= 54°44', *Tr. Note: Commas indicate decimal points.




eccentricity. For a change in eccentricity to 0.003, the difference in per-
turbation |8w| (as compared with perturbations in a spheroidal field) does /144
not exceed 1°. Perturbations of the remaining parameters in this case are

limited to the following values: |8p| < 300 m; |Se| < 0.7-107%; |é&t] < 0%.25;

|§r] < 600 m. Quasisecular disturbances in this cas€ do not exceed the

quantities: |8p] < 200 m; |se| < 0.1:1073; |sw| < 3'.6; |s6t] < 25.5; |er] <

< 750 m; [sef < 3" fsif < 1'. T - T -
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"...It 18 frequently very rigor-  [145
ously proved that a solution for some
problem exists, and it is theoretically
establighed that this solution may be
found with any degree of accuracy, and
much lese attention i8 paid to the
eritical part of the matter, i.e. to
actually finding the solution'.

"...It i8 not the computational
process, but the result, which is
usually of interest in applications;
it 18 for this reason that an attempt
18 made to obtain this result with
sufficient accuracy and with the mini-
mum expenditure of time and labor".

A. N. Krylov

Chapter Three

APPROXIMATE METHODS FOR DESCRIBING DISTURBED MOTION
OF AN ARTIFICIAL EARTH SATELLITE

The system of differential equations for disturbed motion (0.2) cannot
be integrated in closed form. However, there are various methods for finding
approximate solutions which describe the motion of a satellite in an eccentric
gravitational field. Quite a few of these approximate methods are presently
known. However, some of them, although they may be used for analytically
studying the nature of disturbances and therefore have a certain practical
value, have not come into extensive practical use because of the limitations
placed on the possible values of the initial parameters. These include
methods such as that described by V. F. Proskurin and Yu. V. Batrakov [52,53].
Considering the gravitational potential of a spheroid (with regard to the /146
first power of flattening alone), they used a well-known method of celestial
mechanics to expand the disturbing function in a series with respect to powers
of eccentricity (the coefficients in this case are functions of the initial
inclination) and obtained solutions of the Lagrange equations [1, 2] with
respect to parameters a, e, i, Q, m = Q@ + w3and € (¢ is the mean longitude in
the period;(see [1, 2, 3]) in the form of sums of trigonometric functions
which are multiples of the mean anomaly M. These solutions cannot be used
for low values of eccentricity and circular orbits because of the selected
system of parameters, nor for high values of eccentricity because of the
limited range of convergence of the expansions (in which terms to e*

140




inclusive are retained).

The method of representing disturbed motion developed in the United
States by J. Kozai [54, 55] is also inapplicable to nearly circular and
circular satellites and in the neighborhood of the so-called ''critical incli-
nation" i = 63.4°.! This last restiiction also applies to two other algo-
rithms of non-Soviet authors [56, 59]. Limitations with respect to eccentri-
city and inclination impose considerable restrictions on the use of these
methods when we recall that circular and nearly circular orbits are extremely
desirable for many research purposes and for a number of technical problems,

and the value io = 63.4° lies within the range of inclinations frequently

used in practice (remember, the orbital planes of many Soviet satellites and
space vehicles have roughly this same inclination).

This chapter brings together several algorithms which are free of the
given limitations. They reflect various approaches to solution of the prob-
lem and may be used for direct calculations of disturbed satellite motion.
Presentation does not necessarily include detailed exposition of the method
of deriving the computational formulas, repetition of the calculations
required, etc.

In those cases where all this is already available in works published by
the authors, the ensuing sections pursue only the main goal--exposition of
the algorithms in a form suitable for immediate practical application; here /147
we have limited ourselves merely to a brief description of the method which
the author has created. The feasibility and convenience of direct practical
utilization were the principal criteria for selecting the algorithms outlined
below from among many others?.

Since each of the given methods has its own advantages and disadvantages
and may obviously have optimum application only for certain definite purposes,
the last section contains a brief comparative analysis based chiefly on the
results of calculations carried out by digital computer.

! The specific nature of this inclination boils down to the fact that there
are no secular terms in the motion of the line of apsides for orbits with

i = 63.4°, The difficulties involved in describing motion in these cases
(just as in the case of low eccentricities) are due only to the form of the
description and have nothing whatsoever to do with any defects in the motion
itself.

2 As a specific instance, we do not take up the method developed by L. M.
Lakhtin [60] even though it gives a fairly graphic geometric description of
satellite motion.




§11. Use of the Small Parameter Method For Solving Equations of Disturbed
Satellite Motion :

In cases where satellite motion is being considered over a compara-
tively short time interval (about 24 hours), with the perigee of its orbit
located at an altitude of about 300 km and its apogee at an altitude of less
than six Earth radii, and the allowable error in position (coordinates) is
a few km, first-order polar oblateness of the Earth is the only disturbing
factor which needs to be considered on the basis of the results of the first
and second chapters. In other words, model b may be taken as the model of
the gravitational field (§5), disregarding the effect of all remaining
factors (§1).

In this case, there are a number of advantages to the description of
motion in terms of osculating elements. One of these advantages lies in the
fact that these elements change extremely slowly (which consequently makes
it possible to use asymptotic methods), and the right-hand membexrs of the
differential equations are a linear function of a small parameter (which, as
we shall see later, facilitates use of the Poincaré method). Besides, since
the remaining disturbing effects (see §1) enter additively into the right-
hand members of the differential equations and each of the terms will also
contain a small parameter, it is then possible in principle to find solutions
which account for the corresponding disturbances. Within the framework of
the first approximation (linear theory) of the Poincaré method considered in /148
this iection, they need simply be added to the element perturbations derived
below-.

The system of equation in osculating elements for the case of motion in
the gravitational field of a spheroid (model B) may be given as follows:

g—f—:-- epo-pl—zRoosisinzu'; 3

.3__ log tan i« epgal-z-Rsinucosu;

u
dp 2
;’_u-4ep§Rsin2isinuoosu; (11.1)

2
‘_!_‘1’.- %.GP% R[2kooszisin2u+(.q+cosu+

du p

+ Roosu) sin? i sin 2 - R(3sin? i sin® u-1)sinul; \

p2
-—---;- e-—g R[-—2(100$2 isin?u+(k+sinu+
p

1 Equations are given in Appendix IX which describe motion in the field of
the spheroidal Earth with additional forces acting on the satellite.
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+ Rsinu) sin® i sin 2u+ R(3sin isin®u—1)cosul;
3
A 2
p= - P -t -1 N
ﬁ,——R 2+e—°—p “R™" cos?isin’u,

" VR Vi

R =1+gqoosu+ksinu.

Here we use the notation B==3620r§/p§. The parameter |e| decreases with

an increase in the geometric dimensions of the orbit, i.e. in the focal para-

meter p,, the parameter |e| being small enough (when I. D. Zhongolovich's

values are used for the coefiic1ents in the expansion for the gravitational
potential, |e| < 3:0.108586+10" 2), so that asymptotiggmethods may be used for
solving system (11.1). In the given case, when the solution is being sought

over a comparatively small range of variation in the argument, it is better

not to use the method of averaging (see next section), but rather the method

of expanding the solution in series which are arranged in powers of the small
parameter and are a special case of asymptotic Poincaré series!. /149

The pr1nc1pal disadvantage of this method is the appearance of secular

terms of the form u" sin™ u, ut cosJ u{n, m i, j =1, 2....). It is not

always a simple matter to determine whether they are a consequence of using
the method or stem from the physical essence of the problem (in the case
considered below, they appear during calculation of the second approximation).

This situation limits the range (the interval of variation in the argu-
ment) of application for solutions found by using asymptotic series. However,
the method gives fairly accurate results for times of motion of about 24
hours?

By using the components of the Laplace vector in (11.1) as the para-
meters characterizing the form of the orbit and its position in the plane, we
allow for examination of the entire range of eccentricities, while writing
the second and third equations with respect to log tan i and p“ (rather than

1" We are not speaking of the Poincare method of finding periodic solutions,
(see for instance [6], but only of using asymptotic Poincare series.

2  The method of using series considered in this section should be dis-
tinguished from the expansions in powers of orbital eccentricity which are
widely used in celestial mechanics (see for instance [2]), as the latter
are true only for a certain range of initial parameters determined by the
radius of convergence.




with respect to i and p) increases the accuracy of determining the unknown

functions in the given case. And so, for solving system (11.1), we represent

thelunknown functions in the form of series in powers of the small parameter
( g] << 1):

Q-Qo +"FQI+GZF92+---;
log tan i = log tan.gi°+eF,~1 *‘32Fi2 +eee;

2_p2 2 )

P Po(l+eFPl+eFP2+...)., r

. (11.2)
q-qo+SFql+62Fq2+ ---:

k=k0+eFkx+e2Fk2+... .

The last equation splits off from system (11.1), and for known functions
p(w), q(u), k(u), i(u) is a quadrature which is subsequently computed inde- /150
Q;’ Fﬂz""’ Fil’ Fiz""’ etc. depend on the
initial parameters of motion and the argument u.

pendentlyl. All functions F

In the general case, the asymptotic property of series of form (11.2)
lies in the fact that when € = 0 they describe undisturbed motion of the
object, and also, although generally speaking, similar series may diverge
when n + «» (i.e., with an unbounded increase in the number of terms of the
series), they describe true motion with sufficient accuracy for fixed n and
g + 0.

The first to use series of this type for solving systems of differential
equations was H. Poincaré [62]2.

Let us follow this procedure. For the sake of simplicity, we write
system (11.1) in the general form (without the last equation):

do/du ~ QQ(Q,Lp,q,k,u;e);’

dintg i/du = ; (0,1,p,q,k, 1 €);
dp?/du = 2,(2,3,p,q.k,u; ) L
dq/dn = ¢q(cz,i,p,q,k,u;e);
dk/du = 2, (Q,i,p,q,k,%; &),

(11.3)

o

© When we wrote the system of motion equations (12.1) with respect to an
angular argument rather than time, we reduced the order of the system by one.
2 Actually, in this work Poincaré used asymptotic series for solving systems
no higher than the second degree. V. V. Golubev gives a partial exposition
of his method [63] (see also [2] on this point).
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In addition to (11.3), let us consider the 'undisturbed" (trivial in

the given case) system which describes Keplerian motion:
d logz tan i, /du =0;
dpg/du =0;

(11.4)

dgy/du =~ 0;
dk, /du = 0.

Let us expand the functions @Q, ®3i, ¢p
S*(QO, iO’ Py> 99> ko, u; € = 0) in Taylor series with respect to the

k - kO’ g€ - 0=1¢. We get
: a2
2(2,1,p,q,k,u e} = 20(R;,10,Pg,q g ks ¥; €=0)+ :9p—°(p2 -p2)+
9%,
Yo

3% 9%y 5 .2 32s, - a%e
+—S+é—p—2-‘(p "po) +a--+§—ea"p' B(p_po)'*'a?a‘—(q) e(q-'q°)+on-

3%, 3%, a9 . :
(q—qo)-k-gg-(k-—ko)i- 5q (k-2 )+;3T£t—g—i-—(lntg i-lntgiy) +

ds

(the subscripts p, q, k, etc. for function ¢ are omitted).

sions are done on the surface S*, where ¢ = 0, and since the parameter

appears as a factor in the right-hand members of (11.3), the expansion of the

functions @Q, @i, @p etc. retain only those terms with simple or mixed

partial derivatives with respect to € (i.e. a¢9/8€, a@i/ae,J..,

82¢Q/Seai, BZQQ/Beap,..., etc.). Thus, functions ¢ will take the form

2
Q(Qoiopo%k:u; 9)" (g—z)o e+ (%:;%)o 3(9-90)*-
3% . . 3% 2 2
+ 5;3—{)0 e(lntgi~lntg ‘0)*(&73'5)03(? "Po)-l-

3% 3% _
"(aea OS(Q*QO)*(asak)o"’(k k)4 ees s

The subscript 0 indicates that they are considered on hypersurface S*.

We use series (11.2) tc eliminate the differences in parentheses; we

then differentiate (11.2) with respect to argument u and eliminate derivatives
If we now

dQ/du, d/du log tan u, etc. from the left-hand members of (11.3).

etc. on the hypersurface S* =

powers of small differences: Q - QO’ log.tan i - log tan io, p2 - Pg, 9 - 9p»

Since the expan-

(11.5)
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substitute expansions (11.5) in the right-hand members and subtract the cor-
responding equations of system (11.4) from the equations in the resultant
system, then by adding the coefficients associated with identical powers of

€ in the right-hand and left-hand members of each equation, we get an infinite
system of recurrent differential equations for deétermining the functions

FQI, FQZ,..., Fil’ Fig""’ etc. By using these equations, functions with a

higher index may be determined in terms of functions with a lower index. In
this way, all coefficients associated with powers of € in (11.2) may be
determined.

According to Poincare's theorem, assuming fulfillment of the conditions /152
for continuity in the right-hand members of equations (11.3) with respect to
the argument (in the given case with respect to u) and analyticity of these
equations with respect to small absolute values of e, @ - QO’ log tan 1 -

log tan io, p2 - pg, q - q, and k - ko, series (11.2) will converge (in the

usual sense) for sufficiently small values of |e| and will be a solution of
the Cauchy problem for system of equations (11.3). This requirement is ful-
filled in the case we are considering.

By fixing a definite number of terms in sexies (11.2), we will solve the
problem with a certain degree of accuracy which naturally depends on the
quantity |e|. We may speak of approximations (first, second, etc.) as related
to the terms to which they are limited in the expansions (the first power of
¢ , the second, etc.). Approximations higher than the second are not used in
practice.

The fact that the parameter € appears as a factor in the right-hand
members of the equations appreciably simplifies finding the first and second
approximations. The computational work boils down to solving integrals of
the form

u .
';f u’sinmud)snudu» jz 0, 1, 2, csey sz’ X’ZQOOG ’ nmﬂ,l,z,... . (11 .6)

]

By applying the described procedure to system (11.1), we get the follow-
ing first-approximation equations for determining the functions F:

dF, 0% )

_..E= -5-52—)0 = @[Sinzu-f-ko sin3u+qosin2uccsu],‘

dF; /o3, .

1—i==<*—L> usmucosu—qocoszusmu+kosm2ucosu; (11.7)
du de /o

de 3‘51; 2 2, . . 2 . 2

T —-{9—9-)0 -4pooc ('smucosu+qosmucos u+kosm U cosw);

146




- )O = & Ry[sinu+(1+282)kg sin®u 3 o®sin® u — $

~3kga?sinu+(1+2a2)q, sinu costt +4 o2 cos 24 sinu+
+ 2k o.Zsin%lcos3u—3g, 0. 2sin 31 cosu +2gya?cosdusinul;
dF, [o% )
E_{9%:)\ 1 , 2 2
@ \3s )" Z-RO[—cosu—-qocos ¥—-2g9,8 sin2u +
+ (2a2-1)k0 sinwcosu+ 7alsinucosu +
+502g osin®cos?u+5 «? ksindu cosuj. J

(11.7)

Here, we use the notation

~
)
wn
9]

Ro = I.+.q0cosu+ko siny;
a= Sinlg,
g=cosigy.

As we see, the system has been broken down into five independent equa-

tions with solutions which reduced to integrating the right-hand members with
respect to u.

For computing the functions of the second approximations, we get the
following recurrent formulas:

dFg_ |/oe 92 9% )
2 |2 F 2 —2VF |
du Kasaq)o Fg (aaak)o Fiy* (a:ai)o Fiy

= :1—2- fi[Fql sin?u cosu +Fk15m3”1'l§'°‘RoFil sin%u;
dF; 2%; Y
____‘_=<__.‘_ F + i:.) F, =
du dedq/, 71 deak/, "1

2

(11.8)
_ 1
= Q—Fqlcos

dF 3% 3% 3%
P, 4 4 P
L F. : _
du <853i>o it (886(1)0 Fql ¥ (325k>0Fk1

2 . .
= 2p, [o:.qu coszusmu+a2Fklsm2ucosu+
1

us.inu+1 F, sinZucosu;

+2a 3R, Fil sinlicosul;
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dF 9% a% 4%
=32 9 . 3 k.
du (awi)o F‘x M (.aeap>° F91+(aeaq>qu1 *
2%
q .
ki a@k a@k a@k
au = (8&61’)0 Fi 1 * <aeap)o FPI *(&eaq)g Fql +

%,
—— F .
+(ae&k>0 ky

The first approximation solutions (expansions with accuracy to e€) show
a fair degree of accuracy after checking. Therefore, there is no need for
introducing the second approximation in its entirety into the final formulas.
It is sufficient to include in these formulas only the most significant
terms from the second approximation, in particular those which appear as
quasisecular terms in the equations for q, k and Q. The advisability of
writing the_second and third equations of system (11.3) with respect to log
tan i and p“* now becomes obvious from an examination of the second approxi-

mation functions

dF. dF
i P2

and T

du

In the case where the equations are written in form (11.1), they are equal to

dF;
—t2 . L(F
du 279
dF

—-:1.2172[1‘“ sin® iy cos®usinu +F, sin? i, sic® & cos
du o g, 0 Tky o +

+ 2F; 1(}L+qocasu+ko sin#)sini; cosiy sinwcosul,

. cos?u sinu+ F"x sin?u cosi);

If the same equations are written in the usual form o= s

%ﬁ— = .,. , then we get in the second approximation
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t_i%_‘ 'lg {Fql sini,, cosi, coszusinu-}-Fklsiniccosiosinzucosu +
+ Fy (1+gg cosur kg sink) cos?i,sin ¥ cosi];
‘_i__P;gL 2 2 . D 2. o2 : 2 .2
e P, {F;II sin“igcos usmu+szsm i sin” u cosu +
+ 2Fi1(1+q0 cosi+R, sin) sini, cosiy sindcosu —

-LF (l+g,cosu+k, sinu)sin2io siny cos ul.
2 7

P
pO

As may be seen, the form of the second-approximation functions in the
first case is considerably simpler, i.e. the greatest number of harmonics
representing motion went intc the first approximation. This is an indication
that the first approximations already represent the unknown functions fairly
well, thus providing an accurate solution. The final solutions for the five

equations of system (11.1) are as follows:

2= 90+€£‘3[C0 l\(u)+%~qu(Sin3u)-koA(cosu)+ ) /155

+ b3 8leosu) ~ L atsinzu)]

~v

i-arctg[tgio e@{e[%A(Sin2u)+é—-koA(sinau)— (11.9)

—ta A 3 1L
3 qo (CX)S uﬂH; )

p= p0{1+4ea2[%a(sin2 R) *%ko A (sindu) —
_é. qOA(oossuﬂ % 3

q=4q,+ elAga(u)+A, A(sinu) + A, 8 (sin?u) +
+ Az (sindu) + A, A (sin*u) +Ag A (sin®u) +
+ Ag Alcosu)+A, A(cosdu)+Ag A(cos*u)+Ag A(cosdu)+
+ Ao A(cosPusink)+A ;) A (cost usinu) + L
+ A, oA (sin® u cosu) +A ;A (sin2u)];

k-ko +e[By a(u)+B, a(sinu)+B,a (sin? ) +
+B3A(sin3u)+B4 A('sin"u)+Bs A (sin® #)+B, A(cosu)+
+B, A(cos®u)+Bga(sin 2u) +Bg A(cos? u sinu)+
+BmA(cos4u sinu) +B11A(sin4ucos ul. )
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Here, we use the notation A(u) = u - uo; A{sin u) = sin u =

O
©

- -;- ~0,221¢;

- ko(ﬁi’ - ;11-0&2)-9- eQy s

>
- o

N

b - -
a 9% o e ow

0

A
AB
A
A

st
(-]
L]




By =q,ko(p%~c?);
B, =§-qok0a2;
By =kqy0?;

By =-34q,02;

1 .2 2.
Blo 3-'2—‘10“ )

2.
BII = qo ko xT o,
Qo = 1125a* =~ 0,50 ~ 0,502 + 0,125ap2;
Kg = —0375 + 2,187176 « ~ 1,7704869 2 —
- 1,6062218 g% -0,1878664 g 2.

The five equations obtained in form (11.9) describe the evolution of
the osculating orbit of an artificial satellite. Description of satellite
motion requires still another equation which, specifically, may be the

relationship t(u).

This function, -as has already been pointed out previously, is found by
solving the last equation in system (11.1),

dt . -
du = ' = P “R ! 0s? isin2y

du  Viw

assuming that the functions p(u), i(u), q(u) and k(u) are known.

Thus, the problem reduces to computing the quadratures of

iy

u "

g, {1+gcosN +ksinu)?
o (11.10)

+ Ep2 }l’ cos? isinu du
Ou, \/17(1+4cosu+ksinu) ’

in which p(u), i(u), q(u) and K(u) are given by equations (11.9).

In the case where problems involving satellite motion are solved by
digital computer, numerical quadrature of expressions (11.10) with the neces-
sary accuracy should not be difficult. However, this does not obviate the
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search for other methods of determining the position of an artificial Earth
satellite within the framework of the theory outlined in this section.

§12. Solving Equations of Disturbed Satellite Motion by the Averaging Method

This section outlines an approximate solution derived by Yu. G. Yevtu-
shenko for calculating the evolution of satellite motion in the field of a
triaxial asymmetric ellipsoid. Equations of disturbed satellite motion are
integrated by the averaging method in a form developed by V. M. Volosov for
systems with a rapidly rotating phase [64-67]. The feasibility of this
approach to solving various problems in satellite dynamics was pointed out
by N. N. Moiseyev [68]. Appendix X contains a brief exposition of the method.

The averaging method was used for studying satellite motion in the work
of D. Ye. Okhotsimskiy, T. M. Eneyev and G. P. Taratynova [13] in a first-
approximation investigation of the effect which eccentricity of the Earth's
gravitational field has on perturbation of the satellite's orbital elements.
Kozai [54] used the averaging method for a second-approximation study of the
same problem. However, the solution found by Kozai does not give a complete
description of the motion since the given solution may be used for examining
only orbital evolution in the second approximation, while the position of the
satellite is determined in the first approximation; besides this, the approxi-
mate solution cannot be used in the case of low initial eccentricities ox
when the inclination is close to 63.4°, The effect which equatorial flat- /158
tening of the Earth has on satellite motion was not considered.

The asymptotic solution constructed below gives a second-approximation
description of satellite motion in the field of a triaxial asymmetric ellips-
oid. The approximate solution is valid for orbits with arbitrary inclina-
tions and eccentricities less than unity. Special consideration is given to
the case of nearly circular orbits.

This section will deal chiefly with derivation of the approximate solu-
tion. Qualitative analysis based on the resultant formulas is taken up in
Appendices VII and VIII.

We shall use the symbol A to designate the geographic longitude of the
satellite reckoned in the plane of the equator eastward from one of the semi-
major axes of the equatorial ellipse.

From (6.6') we get the following expression for A:

A=Q-m3t+arccos cosk .

v 1-sin?u sin2i (12.1)

Here, wg is the angular rate of rotation of the Earth around the polar axis.

We shall write the potential for a triaxial asymmetric ellipsoid
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{model E, see §5) in the form

-

2 3 T .
SN P 5 R 2 P

2 i (12.2)
- (%ﬁ c§2+dz3922($n¢)cos2A .

The force due to eccentricity of the Earth's gravitational field is consider-
ably less than the principal force of Newtonian attraction. Therefore, we
take as the small parameter the quantity

2 2
% ==€==3C,0T0/Po s (12.3)

which is proportional to the ratio between acceleration due to first-order
polar oblateness and acceleration due to gravity at altitude Po-

The coefficients Cz0° a0’ d22 and Cyp iN gravitational potential

(12.2) are of the second negative order of magnitude with respect to polar
flattening, and therefore, we assume

L 2nd 2.3 2.2
¢ - 2¢»°py . c fr"py . Qz az b*" p)
40 T3 30=-——’3 ) gpt&oe= "5

4
5)’0 o 61‘0

where ¢, f and b are some constants; c characterizes second polar flattening; /159
the coefficient b is due to equatorial flattening of the Earth.
Let us introduce the following dimensionless quantities into our

analysis: time 1, focal parameter P, focal radius ¥ and average angular
velocity of orbital motion ii:

- % . fopp=i: F_rp=l. = 5=
t i 4 - . - . (g2 4
VEP RS P=pp Farplt fa(1-e?)? p A, (12.3")

The potential of the disturbing forces reduced to Kupal we write in the form

P,V . % .
U= 3“ -6—}73—(1-351112@)4-—_{3-(551112(9—3)sin<p+
d 2r (12.4)
+ Kfs{35sin4(p—30Si112<p+3]+-x~—b3m82Am32<p.
20r 2r
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When (12.4) is taken into consideration, the system reduces to the form

do x\/;Wsinu_dz‘ xﬁﬁcwu‘d§_2nﬁ/’f' \
d<” Rsini ’'dc R 'dr R '

;}i =/ 1S sinu+Tlcosu+ R Xg+cosu) J+kWR ™ sinucig i} ;
T

)
- - - (12.5)
g—E- =u\/pti—Soosu+T[sinu+R_l(k+sinu)]—qWR’xsinuctgi},' ' '
2 D =
éﬁz%/— —)-f—;{;l;Wctgisinu. )
T h

Here S, T and W are dimensionless components reduced to K of the disturbing
acceleration in the radial, transversal and normal directions to the plane
of motion,respectively. The formulas for computing S, T and W are analogous
to formulas (6.4'):

S ol . ?zlau cos ¥ . cosi é_l_j_;
Foe come M TF a2 o dA
(12.5")

-?'coscpa@ fcos2¢ J4

In order to reduce system (12.5) to the standard form (see Appendix X), we
introduce the new variable

1—e sind—Rcosu 1-e2 (qginu—kcosu)larctgk_
1+¢ e+gcosksinkh 1+gcosM+Rsini q’

L=2arctg
(12.6)

Formula (12.6) has no singularities in the case of nearly circular / 160}
orbits. Actually, by using the formula

t _\}-3 -sin &
an 3 = {icos 8’

we transform (12.6) to the form

[1;6_ 14, k \/Al—cz(q:sinu—-kcosﬂ) &
L-.?.arctg\'h_d g5 k—arctgq]— rarclg s .

1+gcoslt +& sinll (12.6")
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By expanding the right-hand member of (12.6') in a series with respect to e
and dropping small terms of order 0(e), we get

L = u.
Thus, on nearly circular orbits L coincides with the argument of latitude.

Differentiating (12.6) with respect to q and k, we get

i izl .
23 “rqz | ~91+RMNgsinu—k cosu)+ ki 1e?) - KR
oo 1-e2

-
»2 2
STR7 X +R) g sinu ~k cosk) —g(1~e?)+ 4R —}.
8 1—82

v }.—v

In the light of system (12.5), we differentiate (12.6) and after transforma-
tions we get an equation for the variable L:

—k- )(1 VI—e2y _cosiyime ‘m

The angle of average anomaly M is expressed in terms of the elements of
motion by the formula [1, 2]

-r5 i1+€cos

1% si

where ¢ = u - w is the true anomaly.

Considering the potential of the disturbing forces a function of @, i,
n, k, q and M, we write the system of motion equations in Lagrange's form:

sini

siniy/1-e? 69




ﬂ-l&.

K.if.
il lz

ﬁ'/,[qu—cz) kel ol 70T o

T_e2 o

k(z—ez)au gesgh o0 Aozl .
[ T Firai Vi ag |

1-¢?

<

E -_%

“~
it
22}
Pt

|

; (12.9)

4

2

n [ au +kau] +3u.n'4 ot |
an

We shall not dwell on the derivation of equations (12.9) since the procedure
is analogous to that presented in [1 or 2].

If we disregard equatorial flattening (i.e. we assume b = 0 in 12.4),
the angle Q and time of motion ¢ will not appear in the expression for the
potential of the dlsturblng forces. Thus, Q@ will be a cyclic variable, while
the grav1tat10nal field is a conservative variable. In this case, system
{(12.9) has the following two integrals: the moment of momentum with respect

to the polar axis

and the total energy of the satellite

2
g4
I, =2+l
Actually, differentiating I1 and 12 in conformity with (12.9), we get

N

dl; ol 48 ol g dl,dg ol g .
Tn “Sndc 3 detag dston de Y
. 12.10
dly ”%di foudi oudi ouds e
d< 3 dx on dt o1 dx 9q dx s
s dk oU¢EM ~aU ~aU
+5*a:;+3,q7]‘ wh g+ eR oy = O

The disturbing terms in (12.4) due to equatorial flattening cause a slow
variation in I1 and Iz,

Let us introduce a new variable F by the relationship

4 _fh (12.11)

o +2x{U~-Uy ) =2xF.
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From (12.11) we find

3
. 0%

Expression (12.12) may be simplified if the right-hand member is expanded in
a series with respect to powers of small parameter K. Disregarding terms of
the third negative order of magnitude (order 0(k3)), we get

. Y iy
B=FEg+3un, (F+lUy -1+ 5 (F+U, -, (12.13)

With an error of ~ 0(k2) we find from (12.13)

Y
- ~ A -
B=fg+3un, (F+Uqy-W (12.14)

By differentiating (12.11) in the light of (12.5), we find an equation for F:
dF/d~ = alfa~.

The equation for mean anomaly has a singularity on nearly circular
orbits, therefore, we shall use the angle L in the future. Let us substitute
expression (12.13) for n in the right-hand member of equation (12.8).

System of equations (12.5), (12.8) reduces to the standard form of systems

with a rapidly rotating phase (see Appendix X):

d_Q_ ny 55—?sinu. di x\/_g?/-.-wsxu.
dr  Rsini ° 4t R ’
g% = x\/p:{g—sinu-l-'?[(q +cosu) R ! +cosul +
. +»kR_1i_V.sinuctgi¥,‘
df _2xf% £, aF _au. (12.13)
dx R’ d< d<’ :
g—l'; =fgy— -2R—“\/f)(l-—e2)§—3nnxU+3xng€(F+U°) +
3x? 2 2 dk dq 5\—1
+25‘4[(F+U°) U ]+(qa-;— E)(li-\/l-—-&) -
2 . dQ
-y 1-e Cosl-d—’l-:-' J




The eccentricity which appears in the right-hand members of the equations in
system (12.15) is expressed in terms of the orbital elements by formulas
(12.3') and (12.13). Equations (12.15) are found with an error of ordér k3.

The right-hand members of the first five equations in system (12.15) /163

are proportional to small parameter x, and therefore the variables @, F, i,
q, and p change slowly. The varible L changes comparatively rapidly since

dL/d< =g > %.
When k = 0, system (12.15) describes undisturbed (Keplerian) motion of

the satellite

Lﬂno't.

In this case, the variables @, F, i, q and p are constant.

System (12.15) has no singularities at any eccentricities less than
unity. Therefore, the method of asymptotic integration may be used in this
system.

Let us reduce system (12.15) to a simpler averaged system in which the
slowly changing variables and rapidly changing L will be separated. For this
purpose we use the standard substitution of variables:

$2=§+x91+x292+u3.", i=i+xi1+n2“.;\

+MP1+N2°--v F=F+nF1+u2---; (12.16)

w0
' 1
w2 o

+nql +J¢.2 LA XY L=E+ML1+K2 LI

Here, 215 il, Fl’ 9;5 Py» L1 are some as yet unknown functions of the
S F o5 T

new variables @, i, F, q, p, L. The variables Q, i, F, q, p, L satisfy the

averaged system

2 .
znAIQ +7€2A29 4 eow gy -MAIF**‘” A2F+l"v

-‘)GAli +'7¢2A2i + reny =X’A1p+“2A2p+"'; ' (12'17)

S8 515
0 Al 515

2 — -.~ - ?(.28 L XK
-KAlq‘«bN A2q 4 evey drc n°+KBI+ 2 y
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where Al“’ AZQ""’ Bl’ B2 are functions of the slowly changing variables Q,

i, F, q, p.

The physical meaning of transformation (12.16) lies in dissociation of
the real motion described by the variables Q, i, ¥, q, p and L intn averaged

(secular and log-period) motion @, i, F, q, p, L and short-period motion
which is described by the functions

Ql: 11» FI’ qix Pl: Lls 92, iga"' .

i

The algorithm for finding functions Ql,

oA, A _,..., B

1’ 1Q° 2@’

is given in Appendix X.

Averaged system (12.17) is found in the first approximation by averag-
ing the right-hand members of the equations in system (12.15). The result of
the averaging will depend on whether or not the periods of orbital motion of
the satellite are commensurate with the period of the Earth's rotation.

We shall say that resonance takes place if the frequency of orbitail
motion of the satellite and the frequency of the Earth's rotation about the
polar axis are commensurate, i.e. if there exist mutually simple numbers m
and s such that

~ m__
uc=-§-u:3.

3
Here T, = w3pé;“_% .is the dimensionless angular rotational velocity of the

Earth.
Let us illustrate the singularity of computations of an averaged system
through the example of finding the mean value of the function sin 2w3tf(L,%Q,

i, k, q, F) where f(L,2 , i, k, q, F) is some periodic function of T with
period 2n. The mean value is computed by the formula

T
Ié=hmT [sin2%,xfd=.
Too © (12.18)

Integral (12.18) is computed along the trajectory of undisturbed motion,

i.e. at constant values of the slowly changing variables. In this case,
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L = nor, therefore, the function f is periodic with respect to t with period

ZTI'DO—l.

Let us expand the function f(t) in a Fourier series with respect to
cos.nojr, sin nojr. We substitute the resultant series in (12.18), and the

integrand becomes a sum of terms of the form

a; sin2B 3 teoshoT + by sin28 5 tsinng . (12.19)

Integrating (12.18) with respect to 7 from T = 0 to v = T, we get a convergent
series which consists of trigonometric functions of the variable 1 and is
therefore bounded as T > ». Letting T - «», we find that the mean value of

the function sin 2w3Tf(L) is equal to zero.

In the resonance case, the integral (12.18) will differ from zero if

2w, =jn
®3 =it (12.20)

i.e. for m = 2 and any odd s, since under these conditions (12.19) contains
a term of the form

bishﬁ Boi% s

with a mean value equal to bj/2 and, generally speaking, differing from zero. /165

Thus, additional terms may appear in the averaged system in the resonance case.
We shall say that resonance effects are observed in this case.

Functions which are independent of t may be averaged over the interval
of a single period of satellite motion. For instance, let us compute the
mean value of the right-hand member of the first equation in system (12.15)

/?S_V.'siu
Ao =limid P77
S el (12.21)
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Let us substitute the expression for W'in (12.21). According to (12.5'), we
have
— R ,
V=--—3 sin 2isinu +O{x)»
P (12.22)
Let us take L as the variable of integration in (12.21). Since (12.21)

is averaged along the trajectories of undisturbed (Keplerian) motion, it
follows from system (12.15) that

dL: Od'tp

The integrand in (12.21) is a periodic function of L with period 2%, and
therefore averaging over a single interval of satellite revolution around the
Earth may be substituted for averaging over an infinite interval of motion.
Integral (12.21) is transformed to

\/scosi in

— [ R¥*sin?udL.

Ag=-
£ —
1% 27:p4n00

(12.23)
Differentiating relationship (12.6), we get

dL 2. % ;e

g ~1-en) /RT. (12.24)

With regard to (12.24), integral (12.23) assumes the form

A =—~ﬁCOSi ?Rsinzudu.
1% 2792 4 (12.25)

Integrating (12.25) and using (12.11),we get

;':0 cos i

2p 2

Alg= - +0(%) .

Integrals of type (12.18) arise during computation of mean values from per-
turbation due to equatorial flattening. We have already pointed out above
that as a consequence of rotation of the Earth and ellipticity of the equator
the gravitational field becomes nonconservative and the integral of total




energy does not occur. It may be shown by considerations similar to those
which were used in calculating integral (12.18) that F remains constant in
the nonresonance case. Hence, the energy integral remains constant on the
average. In the resonance case, assuming fulfillment of condition (12.20),
the total energy of the satellite changes.

Since w3 is the dimensionless angular velocity of the Earth's rotation,
it follows from (12.20) that resonance effects appear if the mean period of
revolution of the satellite is equal to or close to 12 hours, 24 hours, 36
hours, etc.

For a satellite with a period of 36 hours or more, disturbance due to
the sun and moon is considerably greater than perturbations caused by the
ellipticity of the equator (see §1), and therefore, we shall not discuss such
orbits.

The mean value of the right-hand members of system (12.15) is calculated
analogously to (12.18) and (12.21). We shall give the final form of the
averaged system in the first approximation for the nonresonance case:

d =~ 052 7 " de " d= "%
N — ) (12.26)
%:—W(Scoszi-l); }

~

dL =  *Bg 2; A E
e -n0+Z:p_T(Scos i-1)+ 3>m0 (F+uo).J

Solving the Cauchy problem for (12,.26) with initial conditions

T"O: Q‘Qov T"‘io’ zi’" qop 3“ 1, F—~ 0, E"LQ:

we get

- 'cnﬁacoaio. — T oL =
Q::Qo————é‘—_, q-cOCOS‘D, l-lo, p-lv (12-27)

F-.ﬂ. L-LO +’C[§o +6+3xn:{’uo].

Here we use the notation

xf . k (12.28) /167
W= BT+w, , e--—%(Scoszto—}), tgwo--q—?;. -
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Having determined the elements of the trajectory from (12.27), we find
the argument of the latitude from equation (12.6). The solution found in
this way approximates the exact solution of (12.15) with an error of order
k over the time interval 7 ~ k~

Let us go on to calculation of the resonance case. Let us study the
case of principal resonance s = m = 1, where the mean angular velocity of the
satellite is equal to or close to the angular velocity of the Earth's rotation
Calculation of the averaged system in this case presents considerable mathe-
matical difficulties. Therefore, we shall limit ourselves to considering
only orbits of low eccentricity.

With an error of orderfwes, the true anomaly ¥ is expressed in terms
of the mean anomaly M by the formula [1, 2].

8 =M +2¢sinM+3 c?sin 2M, (12.29)

Going in (12.29) from true anomaly and mean anomaly to the angles u and L
according to the formulas

u=8+arctg§-; L=M+arctg%, (12.30)

we get
u=L+2qsinL—-2kcosL+—i—(q2 122)sm2L-—chos2L. (12.31)
In place of L, let us introduce a new variable a -- the phase shift between

the mean longltude L + @ of the satellite and the longitude of the semiminor
axis of the equatorial ellipse:

n T - —
- L Q= wWoTe
FmgTE T (12.32)
From system (12.15) we get
é_g._ - "13 ‘_2p (/LI\
w:”"° @, +3x? Ftu u iR ar/
{12.33)

qk Qq +0(1- mﬁly1—e ),
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dF _all
dv " o7’ (12.34)

The angles L and u which appear in the right-hand members of equations /168
(12.33) and (12.34) are expressed in terms of o, Q@ and t by formulas (12.31)
and (12.32).

In the resonance case, we assume that the difference ﬁo - Bé is a small

quantity of order k. Therefore, & ~ x and the angle a, just as the variables

Q, 1, F, q, k in system (12.15) are slowly varying functions of time. The
right-hand members of equations (12.33) and (12.34) contain rapidly changing
terms which are functions of tv. First-approximation equations are derived

by averaging equations (12.33) and (12.34) with respect to T at fixed values
of the slowly changing variables. By averaging equations (12.29) and (12.30),
we get the first-approximation system

é_g_ = ~l/‘-, ?Cﬁo(SCOSzio'—l) .

dr = Mo @a¥3xhg (Fell) + 4p? ' (12.35)
IS xbil

%_F. - - no [(2— 1160)(1+coszo) sin2a +
T

+9ef sin’ i gsin(2 0~ 2w)]. (12.36)

Terms of order ’~|<e3 are dropped in (12.32). The averaged equations for Q, 1,

q and p coincide with equations (12.26) for the nonresonance case. Differen-
tiating (12.35) and using (12.26) and (12.36), we get an equation for phase
shift

2 — —
d o _3x%b (1_17%2) [2sin2 a(l+cos ig) %9 €2 sirl ipsin2(o—w)]. (12.37)

For orbits of low eccentricity (e2- 0(x)), equations (12.37) are simplified:

d%s 3x.2b(1+cosi0)2
dx? T 4

sin2a. (12.38)

Solving equations (12.37) and (12.38), we find the ftunction a(t), and !
from formula (12.32) we then find the angle L(1). The solutions for R, I, q,i?
in the resonance case coincide with solution (12.27). Finding the functiom - ;
F(t) reduces to computing a quadrature. An analytical Ssolution for (12.38) is |
given in Appendix VIII. Equation (12.37) may also be integrated exactly, f

164




just as (12.38), if i = i6 = 63.4°, wg= 0. In the general case, equation

(12.37) should be solved numerically.

Let us formulate the final result of computing satellite motion in the
first approximation. In the nonresonance case, the change in elements of the
orbit is computed from formulas (12.27), and the value of the argument of
latitude is found from equation (12.6). If the period of satellite motion is
close to 24 hours, and the orbital eccentricity is of order O(e3), then the
solutions for @, i, q and p are taken from (12.27), while the solutions for

a, ?} L and u are determined from (12.31), (12.32), (12.33) and (12.6).

The solution for equation (12.6) may be sought by the method of itera-
tions. If the eccentricity is small (e ~ 0( %)), then the argument of lati-
tude is determined from (12.31).

Let us go on to construction of the second approximation. Subsituting
the solution of (12.27) in (12.13), we get a solution for the mean angular

velocity

Bisfiy +3ulyt [F+ll, ~U1+0(x2). (12.39)

The functions F, u, q, k and p appearing in (12.39) are multiplied by
the small parameter «. Since the solutions for F, u, q, k and p are found
with an error of ~«, solution(12,39)for fi has an error of ~«2. In the non-
resonance case F = 0, it follows from (12.39) that i1 then has no secular or
long-period perturbations. This fact was proved previously by Kozai [54].

Let us first examine the nonresonance case. The determination of func-
tions Ql, il, Fl’ d;5 Py and Ll is ambiguous, they are determined to an

accuracy which depends on the slowly changing variables Q, 1, F, a; k. iIn
order to eliminate ambiguity, we require that the average values of the
functions Ql, il’ Fl’ q;» Pg and L1 must be equal to zero with respect to

the angle L.
We then get
. sin 21 R
i) ~—3 0E;cosu-ksmum52u+-§c053u+§ksinBIi—!—il; {12.40)
cosio . q
1™ -quu+3kamu+§n2u+§sm3u_
— —-} _

-gcossu]+ R(u-L) -a,; (12.41)

P, - 2tgige iy, (12.42)
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_.k2 _ 2_yqk2
1 cos3u+ 2 sin? io [cos u(—1+ 3—‘1—-—1—(}—?&-—

4
k .. 2g 6k . cos3u( 112 +17k?
< smu+—§—cos2u-—§-sm2u+ 15 T+ ) -

3k

q2 —k2

k k
‘i() sm3u+i%-cos4u+10 sindu + 55 cosSu+‘{0 smStE”

+kcosi0€2Q —(1—3005 io)(u—i)"-‘ili
L,= g%, —'kql \/1 30 coslo+“ {qsmu kcosu +
1+\/1—80

+ i—‘smz i Esm2u+3k cosu~—¢ sinu+‘-§-sin3u— %cos Bﬂ} +

(12.43)

V1-e2(3cos?ig-1 -
JYEoCo ! :“ fo-1) T +Ly; (12.44)

T g
F, = 2() — lim ,i—, g 2(x)dv. ' (12.45)

T

T R )
() = f a—u-%:,é-w—)-d't, g=CyCco050, k-co'smo), Ww=mOT+ Wy,
0

302+ k2 in2u k
k- 1 {(l»f q4+k )sinu+qm;l -kwgzu —%—(cos3u+3wsu)+

12

2, ok2
. 3 59 +9k 7
sin3u+§-sin210[:—s";u (7+ 5 ) +qu cosi® +

. 5 2 23k2
+ %koos2u+ %chos 3u +’-’—'—'—i—§3—‘-‘—(7 + _‘l__"_;_____)

+

2_32
_3k 34 qk -k ] -
-5 cos4u+i-5-sm4u io cos Su+ 55 sin5u (12.45")

2:
3 ig—-1 .
_qcosioﬂl+-—-‘——-——-—-—-—q( co: 9 (u—L) -k,




COsio 27: Bk - . o q . k
1= 5 Of cos¥ —{sinki+sin2u+ 7 sin 38 ~ Zcos 3u {dL =
e2 cosigsinZw 1+2\/1—c02 i
12
(1+\/1-c )2

- sin2ig4 27

iy = e f qcosu-—ksinu+cos2u+g-cos$u+l3§sin3u dL -

Q

602 sin 2i0 cos 2w . 1+2\/1—co2
24 2"
1+ V1-e?)

The functions ai, f& and E& are calculated analogously to functions 2, and

Ii. For Hi specifically, we find the following expression:

5 x—co :} 3g sinziocos 2w

=2 [1~2sin?i
6( 0) 3 *
t_ 1+\/1—eo 16

L) — . 2 .
+ %(1—80 }sin® iocoszm 1+2v1 60 _ kRsinfw jcos ig N

(1+2y/1-e2)? 12 | 6

Le2yl-eg 2 fy (-ehue o) 1
————— 4 sin 2 .
(1+y/1-e2)? °L“ )2

(1+1e

+

J

Functions il’ Ql’ Pyr 9y and L1 contain short-period disturbances with

eriods with respect to u equal to 2w, 2n/3, w/2, 2n/5 and long-period per-
It)urbat:ions with periods 2w/6, w/6.

Before going on to construction of the averaged second-approximation
system, let us make a number of transformations. The expressions for the

square of eccentricity and mean angular velocity are conveniently represented
as

e = E+xE;, fi=h (12.46)

g i (Fellg-U); E=1-pu % O

From (12.42) and (12.43), we find




3,
Ey=—pyB% ~Zma” 4,
(12.47)

~
o
~
N

We then have
- "1 2m r e

In order to compute the averaged second-approximation system, 1t 1s neces-

sary to find the functions

(12.48)

p
M L ou QLq s oLy (12.49)

According to (12.27), E'= 1 + 0(k), and therefore

R) _ R 3R g R

p

Substituting formulas (12.7), (12.42), (12.43) and (12.44) in (12.49) and
(12.50), we get

2 —1
(p)l &{( _.2_51n 1)[14. —cc——\;,%,d-% l—ez—é—é—sinzicos 2u+

1+vy1-—

2 —
2+¢? 1+2V1 ‘ ] (12.51)

3¢sinZi _ .
+ 252818 % gin2wsind] 1~
2(1—62) [ 3 (1+f

_ esin?icos 2w 142 1—¢?

2 (1+y/1 - 62)2

. 2.
TR R AT —1-15{(1—%sin2i> B‘-sim&(l— V1-¢2 —22-2.)+
+ sin®(1- y/1-¢2)| —3esin($ +2w) (1 - g-sin2i> -
_3sin2u<1—g-sinzi)—-Cmszisin(3\3\+2w)+128sinﬂ-(l—% ;

1+2\)1—

(1+ 1—e2)?

2 .2, .
+P§)-Sin2isin2w _3R sin” Isin2w
2(1—-¢2)
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2 ..
X [&— R2sin2isin2w - €2 cos?isin2w —
2(1-e?) (12.51)

—e(1+R)sin$sinZicos 2w +(e2 —1)sin?isin 2‘*’] ’ (12.52)

~
[
~
(O3}

Here i = 1 _, e = eo, W= 61T + w

0 0’

Let us illustrate some singularities in computing the averaged system
by example of the integral

O cos !.3

f R3sm¢.u (L-wdL.

ls - 12.53
2m(1-e2)% O (12.53)

We use the notation I, to designate the integral

4
I~ _ﬁo_sfig_ f Risin2udl- ° oif032.t+ecos(u+w)+ —cos(34+wJ
(1-e?)* (12.54)
We represent integral (12.53) in the form
2% 91 - =
) 4
I, = ‘:"7‘6{ a— u-L)dL. (12.55)
Integrating (12.55) by parts, we get
2n am
6 -—
I, -~ﬂgl4d ziof aL. (12.56)

It follows from the form of the integrand in I, (12.54) that the first inte-
gral in (12.56) is equal to zero. The second integral may be written in
the form

aq
;1 dL-——-;tL- 3.
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Omitting intermediate computations, we give

the final form of the
system in the second approximation:

di

di
3 . . . 1
- é-xznf\/E cosiycos w(5cos? i — 1)+x_d: =A;;

# i . 2., .
Zc—-o—m-z-'-——-u.zG--->c.2DI.‘.'oos2m—-5i- no'i'lsmlo-e
2'52 2
dg

fi f\/-‘ctgzosmm(lSsm iy —-4-)+x—a—;-,‘

Z-ZtgiO-Ai;

- 7
‘i‘-]? - nnok —2_ (5cos? 1—1) %% k[A+Gcoslo—EDcoslol+x% -

~kx2G? [7Hsin2io+ZDcosi°]+)—°-£—29-(5coszio—l)(2q—ql -E))-

4p2

3% 2R3 fi [(1+4E)(5sin’ 10—-4)sm ig— Ecos?iy(15sin?ig~4)l+
8Esm10

-~

% .
B T2 (1-E)(Sensiy-D)- > kigi -Ty(15c0s*ig-2);

d =1 +M—5 Eoosl+xN+x2M0052w+-———-—~— ny1-E

- 2
T 0 2k (1+/1-E) 2p

(1 3 sin? ) 15x2 E(1-E i sinw(l-5cos? ip)+

+fign2(5c0s?iy—DigigVI-E iy

éé - -21-E)tgi- A; ;
%= VE-32; tgu-= -’;_g_ussm%o ~14+18C(6 ~T sinZig)l;

. o .
G- "i—}‘i"-]} ELVTE +sm2zo(-g-+-2-52ﬁ-§ \/1."5\ .

averaged

(12.57)

(12.58)

(12.59)

(12.60)

(12.61)

(12.62)




o
-

+ 1_‘1 (Up-1) + 3£ (1+§E> (4—7sin2io>J?
C

ﬁ.ocosio ed ain2i 925 .
D= ——16—-—};——3— - S5sin®iy +6¢(7sin®i -3 |5
- N2/ = - 3(5cos?iy—1) —
A=n0{<l—%sinzlo> (533"' t E) + 02 (U, =-U) +
\ 4(1—c0)
5 2 5 .2 s 15 L:.44%
T i5 4+E~2sin®i, +§-Esm ig—=Fsin®iy -
« q
-—%‘:"-Esin“ io_! - %{:(6-7&:12 1'0)(2+SE)sin"’i0 -

—4(4+3E){1—55in2 iy+ gsésin“ io)] ;

~l/s KUQ ] nﬁo(l—E)( . 9 )‘2.
N=3n, (F+Uy)| 1+ + 1- gsin®iy) +
o {F+% {: 21-e2) 4 3

THox Jo E_E% . 2y 3 45 EZ.
+8——-i—_—E{3——'2‘-6+51n 10 —§+'§E+6+

, . g2 3¢(2 1_E
+5$in210(61-_.1%.£+% N ¢ +3ES)( ) N

X (1 - 5sin?ig + %,’— sin* io)};

- . 2' |2 I
lnoﬁvllg—zESIn lc[lssin2io _14+18C(6—~75in“ !0)]-

With regard to (12.16) and (12.27), we write the initial conditions for
(12.57)-(12.61):

Q= Qo =%Qgs I=ig—niyg; T{nqo—xqio;

We substitute solutions (12.27) from the first-approximation equations
for the functions q, k, i, p and F in the right-hand members of equations
(12.57), (12.59) and (12.62). Since the right-hand members of equations
(12.57), (12.59) and (12.62) are proportional to «2 and approximate solution
(12.27) is found with an error of ~¢, the equations obtained after substi-
tuting solutions (12.27) in place of @, X, T, P and F will be computed with
an error of'~K3, but initial conditions (12.15) were constructed with this_
same error. Therefore, substitution (12.27) is valid. Czlculation of i, p
and E now reduces to quadratures. We have finally




u22

T = ig+ 33— sin2i,[cos 2w ~ cos 2wy 1~ §negfoosi x
x[sinw-sin.wo]+x.-i_1-nim-x-i—m; (12.64)
E=el-2(1-el)tgig(i—ig)+2x(U-Uy); (12.65)
P =le2xtgig(i~ig). (12.66)
We write the solution for equation (12.60) in the form
g =vVEcos(et+w;)+x(g+q,), (12.67)
where /176
kao—
t_gwl - _q__lk_p..
9o ~ %9y

Differentiating (12.67) in the light of system (12.57)-(12.61), we get an
equation for the new variable yv. We substitute solutions (12.64)-(12.6€) in
the right-hand members of the system of equations for @, L and ¢ , and expand
them in a series with respect to powers of . We drop terms of order k3 in
the equations for Q@ and L, and retain only terms of the first negative order

of magnitude in the equations for ¢. We then get

xit , o .
do o o Hotele 5 15e0s2 i) T-ig)+
gz = %27 2 ' ° °

E X
Bpctg{ 6T +w, ) ~ cos(6T+wq)~q. ;
*ReclE Y 9x/E =4

L ~ + = . 8 ¢
g—% =ty+nl,~QV l—cgcoslo+xN+u2.P§1c0'52w+1——?-;—c———\/_1?:\/_E:E-+ ! (12.68)

2 2
— 2x2HeZ\/1-€2 (cos 2w —cos 2 wy ) +60xfe v/ 1—€5 x

x sinig(sinw —sinwg )+40xtgiogy/1-ed(ip+ 115). )

= 2
» V10 (1_3 sin2i(> ~ 15 sefe /12 sin g sinw -

Determination of the functions £ and L has now been reduced to quadra-
tures. The function ¢ satisfies a linear differential equation. Solving
(12.68) with initial conditions (12.63), we get
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el . x?‘eg D
3 COsS zo - 5

0= Qo -nfy g +xQ) ~xl - (sin2w -

. 2 5x s opi .
—-sin2wg )=x T[G+7 nosinig (45 + 1, )]+§2-neofctg 1y %

x !—cosw-cosw +2%th,. sin?i, sine +5602xﬁ0 Hsin?i i
L (o) 2 0 0 p) sin locoslox
(12.69)
x {sin2w - sin2w, - 26T cos2wy);
——F _te x®A+Geosiy— e2Dcos i+ 2 tei (1500821 .—2)
sin{8T+w ) Y 0= "0 ot g gl ivcosTig—a/x
2 2
. - 3 . . x-e . .
"[‘10‘”10 +—;§§Hsm21ﬂ + 460 [sm2w—sm2w0+26'clx
2 . 2, . 2. 5083 2.
x| 2egDoosiy+H(2+5¢€5 ) sin”iy — 55— H(15c0s%i 5 —
—-2)sin2i(]+ Snf (sin?i, —e2cos? i Xcosw —
2sin iy 0 0 0
~cos wo) - £ fgedsin? igsin?wgr (15cos? i, —2)}; (12.70)
2
- . X, +67Te - — -
L=figcs __0____2_0_( -, )\/l—cg cosi0+xLl-—an —an +
1~1~\/1—eo
2 3x(U, ~1U)
+ 55 (1~ed) (1_ $ sin? io) (1+ —0 "},
1-¢?
xeglk, cos(6T+wg) ~T sin{8%+wp )] 2
+ 1 12 0 +)-£2?M(sin2w—-sin2w0)—
2.2
x“eg H . 2. . .
- eo l—cgsmzlo[stw—smwao —2'cecos2wo]+
+3—xcof\/1—cg siniglcosw~coswy~48Tsinwy . (12.71)

The components of the Laplace vector are computed from the formulas

qz\/gcos(e't-+w1)+x(<p+ql+ql); B (12.72)
k= \/Esin(e’t+w1)+x[—q’ctg(6"c+wo)+kl +k; 1.
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Let us give the final rule for calculating satellite motion in the
second approximation. After first-approximation solutions have been found
for the functions @, L, p, F, 1, q and u, we substitute their values in

(12.40)-(12.44) and determine i, p, %, E, q, k and L by formulas (12,64)
(12.66) and (12.69)-(12.71). Returning then to the initial variables, we
find the functions i, p, © and L. The argument of latitude in the second
approximation is found from equation (12.6). The final result is independent

of functions Ql’ 1,5 Pys 9y k1 and Ll'

The constructed solution approximates the exact solution of system /178

(12.5) with an error of ~. 2 on the interval t~ . !. This estimate of

K

accuracy holds if fi ~ 1. For orbits of greater eccentricity, fl is small, and

the approximate solution in this case has an error of ~ﬁ_2K2 on the interval

T~ K_l.
The solution found for i, p coincides with Kozai's solution [54].
The solutions for Q, q, k and L differ from the solutions in [54].

In the case of equatorial orbits, the angles @ + w, L + w should be
substituted for the angles @, L. The effect of the third zonal harmonic on
the motion of an equatorial satellite requires special consideration, and we
shall not take up this problem.

Calculation of satellite motion by approximate formulas involves two
difficulties: first the solution of equation (12.6), and secondly calcu-

lation of the quantity FlO' However, since solution of (12.6) is equivalent

to solution of Kepler's equation, methods may be applied here which are
ordinarily used in celestial mechanics (method of iterations, gradient method,
expansion in series). In the case of orbits with low eccentricity, the argu-
ment of latitude is computed by the explicit formula

u-'L+2e°(l—c§)sin(L-w)+§-c§(l éé 2) sin2(L - w) +

+ig 4;1:13([.—«»)-«-1‘9é 451“4(1..—6\))-{-... .

For computing F
(12.45) to the form

10° We use integration by parts to transform formula

T T
- tin [} fe e 4] (12.73)
Fm lim T ({'ca't d= ofa'c dv |.

T-vo0
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Taking the argument of latitude as the variable of integration, we get

1V xoau ol ]
Fuo- Jin [y [ o [ gegan] ot 2.7

Thus, the determination of F. . reduces to quadratures which may be

10
done numerically, or in the case of orbits of sufficiently low eccentricity,
may be found analytically by series expansions. The extent of the integration /179

interval Uy in (12.74) should be chosen so that the error in computing F10

does not exceed k.

In formulas (12.45), (12.73) and (12.74), the symbol 3/3t denotes dif-
ferentiation with respect to time given explicitly at a fixed value of u.
Integration in (12.45), (12.73) and (12.74) is based on the assumption that
u is a function of . The relationship t(u) is found from (12.6), assuming

q=q0,k=kO,L=n0 +L0‘.

In the expression for the potential of disturbing forces (12.2), two

tesseral harmonics were previously retained, but since only the quantity FlO

depends on tesseral harmonics in the second approximation, the effect of
these harmonics may be easily accounted for if the remaining tesseral har-
monics are included in integrals (12.74) in the expression for U.

When a computer is used in calculating satellite motion, it is con-

venient to use the method of iterations for solving equation (12.6), and Flo

should be calculated from the known quadrature formulas. The use of approxi-
mate formulas results in a sharp reduction of machine time in calculating
satellite orbits.

Computation may be simplified somewhat by using the formulas

e? —el —21-€l)tgig(i-ig)+2x(U-Uy) +xE ;s (12.75)

E:\/Esin(e'rq-wl)-xcp ctg{6T+wg ) (12.76)

Formula (12.75) follows from (12.46) and (12.65). The second-approxi-
mation solution is now constructed as follows: After calculating the first
approximation from formulas (12.40)-(12.43), (12.64)-(12.67), (12.69)-(12.73)
and (12.16), we determine 2, i, p, q and e; we then find k from (12.76). We
compute kl from the formula




=~ Ve —q? -k, (12.77)

We then find L from (12.44), (12.71) and (12.16). While this procedure
eliminates the use of (12.45') in calculating kl’ it is not appllcable if k

is small, since in this case the difference between close quantities q - k
in (12.77) has a large relative error. Therefore, in order to avoid loss of
accuracy in determining q and k, they should be calculated by formulas (12.72).

Besides using the resultant solution for the purely computational
purpose of predicting satellite motion, it may be used for qualitative analy-
sis of the effect which the Earth's oblateness has on satellite motion. It /18
is extremely convenient that variables ordinarily used in celestial mechanics
are used in the resultant solution. For this reason, disturbed motion may be
qualitatively studied directly on the basis of the approximate solution with-
out preliminary transformations.

It is obvious from the solution that the disturbance of Keplerian
motion is extremely complex in the general case. Out of all the elements, we
should isolate inclination, the square of eccentricity, mean angular velocity
and the focal parameter. The solution for these may be written in the form

P = 142tgip(inig); R=fig+3xhig(Ug~U)s

'_1 ~ ~ B
el cg —2(1—-e§)tgi0(i-i0) - %— no’g(n ~ny).

Hence, it follows that long-period perturbations of the functions p, i, ez,

Qomy o o . .
—gh “(i-R,;) differ only by constant multiples. The short-period

perturbations of these functions are similarly related. The elements p, i,
e and 71 do not undergo any secular variations. Disturbances of @, L and w
are much more complex.

It follows from the resultant solution that the tesseral harmonics of
the Earth's gravitational potential in the second approximation have no
effect on orbital elements Q, i, p, q and k; however, a secular disturbance
of the angle L shows up, which changes the position of the satellite in the
orbit. Therefore, if it is necessary to calculate only the evolution of the
satellite’s orbit, while its position in the orbit is not consequential, then
tesseral harmonics may be disregarded in the nonresonance case.

The approximate solution is simplified in the case of nearly circular
orbits, where e, ~ 0(k). In this case, by dropping terms ~« from (12.40)-
(12.45), we fin8 an expression for short-period disturbances
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1 . . . > >
Ql.—.4—-coszo sin 2u, 11-%-sm2locos2u;
q,= é—[cosu—%-sinziocosua-i% cosBu-sinziJ ;
k1 = lEsinu - %sinzio sinu+1—7;—sin3usin2i(;] ;

2 (12.78)

1 .9 1. S cin2i
P, = ysin“i;cos2u, Ll-zsanuE‘:;-smzlo—]. J

From (12.64)-(12.66) and (12.69)-(12.71), we get the expressions for
secular and long-period disturbances of orbital elements:

§=Qo—k91,0-%3msio{ 1+i—°[5-— % sin? ig +

+3¢c(4-=7 sm2i0)+12(u0 ~0)+5sin2 i 00521&&};

Tmig=niyg, P=1-xp; (12.79)

- %xfsini,o+ —g-sin {et +arcsin—1g[ 2k, ~ 2kal -
~3xf sini, ]};

24 k% = Eq +3xfsinig(k — kg +xk,g);

~ . o ®H R
- "B{no +%N+x6 sin? iycos2u, + —40—(3005210 -1)x

x (1+3xUg)p ~Qcosig-x%L,,.

sin? i0+3—61-sin ig +

('53(1+cosi0)2
+ ———— 0052(u0+ Qo) H
Wqa=1

EO" (q, --xqm)2 +(by—xb, )2.




The approximate solution found from formulas (12.16), (12.78) and
(12.79) is a solution of the second approximation: it approximates the
exact solution of (12.5) with error~«x?< over the interval 1t~k , if e0~ Ok ).

Using solution (12.7&), (12.79) and assuming f = 0, we find the formula
for the dimensionless focal radius of the orbit

Faele €ycos(6T+w g~U) + g’-{ (1 - ;E;—‘sin2 i)cos(e't+u o—K¥~-1l+

22
7 . 2. sin ‘0 . 9 !
+1g sin igcos(eT+3uy—u)+ 3 cos2u —sin* i cos 2u, +

(12.80)

+ :—32— sin® Iy + %—sin2 io sin? U, sin(6t~ u)} .

The solution for the problem is simplified if the orbital inclination
is close to 1 = 63.4°., In this case, assuming that the difference 5 cos

iO - 1 is a quantity of the first negative order of magnitude, from (12.64)-

(12.66) and (12.69)-(12.71} we get formulas for long-period and secular
disturbances of the orbital elements:

-

i mighuijg—2xelHsin2ag; P = 1+d(i —ip);

# . 2 o .
Qe Q) ~%R 1o -wz:[—éo— cosiy +xG+xDey cos 2wy - %xnoeofsm wg +

ojet

+ 2

o . sps - 3 e .
xnosmxo(lmﬂl)] -%_ cg.'cz fig Hsinigsin2w g ;
¢=—Txey{A+Gcosi, —C%Dcos ig+ g—kcﬁofcosio~ﬁoim ~Hgi +

. 2 o 2 . o
+cos?uwg l:Zchdos 10‘*‘5%‘ H(2+5¢oz} - '5‘9""50 ©Hsin2w, psineg;

xplg+T ecg

1+v1-¢3

L =L, ""'Lm"'ﬁo"*‘ +(Qo—§) 1-—6‘2) oo‘szio-'-ch‘J-i-

‘T l-kql .

1+\/1—e3

We substitute q = qo, k = k0 in the expressions for il, 91, P> Qp> k1 and Ll'

> -2 -
+>4.Mco’s2w°—’{—8- Vi-e2 (1+3xﬁ'0/' (UO—U)E] +

The formulas derived above may be used for approximate calculation of
the evolution of satellite motion. An important advantage of the resultant
solutions is the fact that the solution is found in explicit form for
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osculating variables ordinarily used in celestial mechanics. Therefore, it
may be used for qualitative investigation of disturbed satellite motion with-
out additional transformations.

§13. Hyperelliptic Theory of Satellite Motion /183

A form of potential function may be found which approximates the Earth's
gravitational field fairly well, and a system of coordinates may be found for
which the equations of disturbed motion are integrated in quadratures. The
problem of motion of an artificial Earth satellite is solved in this formu-
lation by M. D. Kislik! in [69, 78], (sic).

According to these works, a system of curvilinear coordinates is
selected in which any point M of space 41> dys Az is given by the intersection

of three surfaces: an ellipsoid of revolution, a hyperboloid of one sheet
which is confocal with this ellipsoid and has semitransverse axis 2y and the

meridian plane passing through their common axis (the minor axis of the
ellipsoid and the conjugate axis of the hyperboloid). The ellipsoid and
hyperboloid are confocal with some biaxial ellipsoid (with eccentricity e =

/ . . . . . .
va? - b2/b) which is selected in such a way that the gravitational potential

V of the homogeneous body bounded by its surface coincides with the gravi-
tational potential of the terrestrial spheroid (see £5):

L Io\? PN
V - ;—[} + (}—> € 50 Pag (sin ) l . (13.1)

—

In this case, coordinates ay and q, (coordinate dz is the spherical longitude

of the meridian plane) are determined by the relationships

while the force function V which satsifies the conditions V - V = 0 (V being
given by equation (13.1)) is equal to

= _w VI ]
. 449,-4, (13.1")

1 A similar problem was solved somewhat later by J. Vinti [72].
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However, the function V so selected coincides only with the first two
terms of the force function of the biaxial terrestrial ellipsoid

V= [:1-1- z (——> ;oPio(Sin‘\‘)]'
i=]}

The resultant error is equal to

~
j
[¢]
K

|

AV-V-V. (nd* —640);}5 P, (siny) +

d2n

TR
+Fn§ (~1" ;—-—Pzno(smy)

3

Given certain assumptions, the first term of this expression alone may
be used for evaluating error AV, According to M. D. Kislik's estimates, the
error in determining the acceleration of a satellite when the potential is
selected in the form of model (13.1') will be no greater than 7 mgal through-
out all outer space.

In [69], potential (13.1) is called the normal gravitational field of
the Earth. In this case, the quantity AV appears in the potential of gravi-
tational anomalies.

The equations are written in canonical form to find the integrals of
the motion equations for the satellite in the normal gravitational field.
Integration of the resultant system, following Yakobi's method [72] [sic], is
replaced by finding the complete integral of some differential equation in
partial derivatives. In this way, M. D. Kislik finds six integrals of canon-
ical equations of motion which are expressed in quadratures, and after certain
transformations may be written in the form:
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\

g, =y + r” () =1, (8);
13(g)=i4(“);

e\ g I
= é; 5(%)1—;6(’1)];
ps\/g_g.\/e(f;) ) 15.2
V2 zaeg?)y’ (13.2)
\/ gP(n)
n(i-n2)’

P, =D2vud.

v

Here we use the notation:

6(¢) is a polynomial of the fourth degree;

1 I I I I. and 1

12 20 t32 g0 15 ¢ 2re elliptic integrals;

D2 is a constant;

the subscript 0 corresponds to the initial values.

Actually, the derivation of integrals (13.2) constitutes construction
of an analytical theory of satellite motion, called the hyperelliptic theory
by M. D. Kislik; since the elliptic integrals written there are not trans-
formed [73], equations (13.2) may not yet be used in computational practice.
M. D. Kislik manages to reduce them to a form convenient for calculations by
a certain transformation of integrals Il’ 12, 13, 14, IS and I6 and by

expanding the integrands in series with respect to powers of the small para-

meters kg’ 1° A, and B, which are approximately equal to

It

2 2.2 ., 2, ~ 2 :
ky = e"egsin®iy; a; Zdeegeos?iy;

n

2 ~ .
3230; 5-3260C05210; Gzﬁd—'c
0

Ag




After these operations, the integrals are written in terms of the series
S(p), Fle), Mlp), M(z) and L(g) as follows:

I, = ALS() ~ SN I 4= KIF(L) = F(gg)s
1,=BIF@) - Fg)l I, = NIM@) -Mlgel;
I, = CUF()~ F (g I =PILE) ~L(g N,

where A, B, C, K, N and P are constants. The subscript 0 designates values
at the initial point. The argument in these expressions is the angle iz,
which is approximately equal to the argument of latitude u in the correspond-

ing Keplerian motion of the satellite. The exact value of r is found from
the expression

M=1n,sing,

2

where n, >0 is the lowest root of the polynomial P(n) =-mn* + nn? - s; m, n

and s are constants. The angley¢ is also expressed in terms of the angle gz.
In point of fact, however, (since n = vV-g,), it is obvious from (13.2) that

the argument in this construction of the analytical theory is the curvilinear
coordinate a,- It should be noted that the independent variable may also be

represented by the angular quantity ¢ ( which is approximately equal to the
true anomaly ¥ in Keplerian motion) or by the time of motion t. In this case /18
there is a change in the order of the calculations outlined below [70].
Let us assume that at any instant tO’ the given initial conditions are
the spherical coordinates of the satellite Tys wO and AO and the correspond-

ing components of velocity
Vio=Tgs Vgo=TpoV¥ps Vao = LAY Ao COSYg -
Then the algorithm for determining satellite motion is constructed ac-

cording to hyperelliptic theory as follows [9, 10].

1. The initial values of Eo® Mo and Q5o are found:

> 930
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142 2 :
- msz\ya[th- %(I—Ssz\yo)]};
0

2 2 1
ooszq,oEH‘—:O?(B—?sinz ¥ ):”,

2 2 2
r r
8 _ L sin?y |
E 1) +4 ¥E sin® g, |5

Yz 2 "2
Ly 8. 1\= -0 -0 gin2
2 |\ 2 1> (dz 1) +4d2 sin®y, 1.

is the initial focal radius of the satellite's position;

Here the quantity Ty

d is found from (13.1).

2. The values of the constants Dl’ D2, D3, m, n and s are calculated:

dvg Vi, .

D, = ;
17 2 230~ 42¢

VapnTacosy
D, —300°2%%0 _ vao‘/é’- VIag )+q,0);

Ved

2 2
~(leg g, v+ v )
) 2
+ (Vg sinyy +Uyo cosy, ) |5

1 n2 2 .2 2 2
n=D;+2D,, s=5D0;42D;, vg=Vyg+ Uy + V3o »

The following approximate relationships may be used for a check (po and e

are the initial values of the focal parameter and eccentricity):

Po= —2nmd; eg=+1-dmn.

3. The method of successive approximations is used for finding the
real roots gl and 52 of the polynomial




0(8) mme? +&® +ne’vg4s; g 28 >8,>0.

The values

, 2n . . 2n
gl » - y 52 - - .
1 —+/1-4rin +y1-4mmn

are taken as the first approximation. The following approximate relationships
may be used for checking:

~ Voax Py . ~ Foin Py
E;‘

d "dl-¢g)’ "2 7d Tdarey)

In the case of an orbit of a nearly circular satellite (e = £%), roots 51
and £, differ from each other by a quantity approximately equal to 1. In

this case, the values

., P . P . -
gl--—‘-;-)-+AF,; gz--a‘-’-—AF,, At =1- 2.

are taken as the first approximation.

4. The quantities Xy and X, are determined as the roots of the quad-

ratic equation

(Uol "‘0'-2):2'4-2(51 - ﬁz)x'i'(az ﬂl - “152 ) -0;

al-"(gl*"gz); 31"51§2;
-l . - S
%2 =gi\m T 1B Bq e, g,

5. The constants B, E, k2, T A, and  are found:

g2 by B
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' X
B = 2E' E = 2xl+°'1.
X ! 2 )

p2 . 2%+ )@, 4 ay) 2({a; + ap)
E7 24 i Ty ’
xl"'xz)(az -“1) (xl—xz)(al-az)

A L 2EQexizy) A o Elasxd)
T - —;
“-x? 2 1+x§
( LTI
arccos ——————  wher 7 .
- E(g,~x,) € 4,,>0;
/188

%1~ 50 .
2n — arccos Fe—z.) where 4q,,<0.
(*50"' 2

Derivative le is determined from the formula

3 4q10<1+‘210) P pd Vv e(%o)

= ; Py =\ /2
107 472 205 Py .
4% 10~ 950 2 Bo(1+55)

6. The quantities Ny and n, are found as roots of the polynomial

P(q) = ~mn*+nn? - s;

l)<'q‘;'51<n§.

To avoid loss of accuracy during the calculations, it is recommended
that root > be computed from the formula

7. The values of constants ki, T, and angle to ave calculated:
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N

.0 5
arcsin =2  where qzo <0:
Ny o ;

(0 <kf1 <1);

C.ao"'
Mg

7 — arcsin —— 20 .
A where . > 0;

o = 4,00+ 4,5) \/bod VP(ig)
0 .
i dz(qzo"qlo) 2 no(l-ng)

If ng = 0 (the initial position of the satellite is in the plane of the
equator), then the value gy = 0 is taken at v,y > 0, and the value gy = 7

when voq < O.

8. The values of sums S(p,), Flo,), Mlpy), T(zy), F(gy) and L(z,) are
calculated:

, 2 o o 1-3...(2n-1)
S(‘P)’S(’) +2ESO +E SO +n§l-—2-m—ﬁ‘_'x

x k2" (S;, +2ES7+E’ST,

- 1

z a,D (cp);

m nn
m=0

5 8pDpyyn (@i p m=0 12

e m=

‘E amDm+2.n (‘?);

mo= 0

—-Ala

ey = Ba8p_gi M22; Go=1; @y =—8,;

2h-1 p sin2®~lgcos ™t @
28 +m mynelT 21 +m

;
¥-1 sin2"+1 Qcosm_li,
2n+ M D"'—2-" + on+m ’

Doo ((P) - Q3 Dlo ((P) = SinQ;

2°4.0. 21

F((P)'- Ao((?)+n;1 1-3.--(2”—1) kznAu(Q);

An(‘f’) - Don(q’)i




o » 2 -~ % 1'3-..(2"""1)
M(q) = Mo +28M + p* My + T Soptnoms
x kg (M), +28M7 + 82 M) );
o m
(9 =z (-1) (m+1)E™D,,

Mo (@) = m°§0<-1)”‘<m+1>5’"0m+1.n ;

M(9) = T (=D™(m+1E™D,,5,, «

m=0

At large values of 5> in view of the slow convergence of these series, the

use of recurrence formulas is recommended:

]
B" "Mn—-l Mn—-l ’

” 2 sin?”— 1,
Mn"g (1+ E )ln 1+2EM -1 " TEn oI R

M - :Elz-[A,, - M, -2EM] |;

I | [Esincp G(c?)

1,E2 1+Ecoscp /
M7 o L sic g 2E
° " 1_F? [1+Ecos(p V1-E? (cp):;

Esi 202E2% - 1) ,
bﬂ - 1n
. Ezr -ED+Ecos @) (1o E3 i E? G(@]'

V1-E2 P

G((p)- arctg _I__E—‘ tg —2 .

The angle ¢ lies in the same quadrant as the angley/2Z.




no

© 1+3.,.(20=1) , 28
H(g)'}%'*nﬁl e de..of Fn H

Where z '
13.8
Hy = 1 - amtg(\/l-—ng tg)~ ——x(5). ( .
1-m, l—ni

J

e b

The angle x(z) = arctan ( /1 - np tan z) lies in the same quadrant as the
angle z. :

The sum F(g) is found from relationship (13.6), but with substitution
of the variable £ for the variable ¢, and substitution of the constant k%

for the constant ké .

L(c)_Al(g) +n§1 M kf’lnA,Hq(‘;)'

24 00 2n (13.9)

In all groups of formulas (13.5), (13.6), (13.7), (13.8) and (13.9), the
initial values ¢ and rg are taken as arguments ¢ and g in calculating the
sums S@,), Fg), N(gy), F(zy) and L(gy).

~
ot
[Ye)
pond

|

This completes determination of the constants and of the quantities
which depend on the initial conditions of motion. Subsequent computations
are done for each given instantaneous value of the argument z.

9. For each given value of z, the following precedure is used for
calculating the corresponding value of ¢ :

-- F(z) is calculated from formula (13.6) , the variable r being sub-
stituted for ¢ , and the constant krz] being substituted for ké;

-- the function F{¢) is found from the equation

T
F(o) = Flgy) + -Tgmr,) - F(g )l

-~ the angle ¢ is found by the formula
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nF(9)
" Kk T

T 1
E1n

" . [:mmﬂ

1eg?n | K(kg) |’

in which the function K(kg) is the series

L
»N

. o3 3

- k2 14+ L 2,21 p4 31 36
q 15"&(1*'2}‘.5* kg*%skg*'"' ).

Actually, the integral Is(g) = I,(n) from equations (13.2) is used in the

given case.

10. The instantaneous values are calculated for the integrals:

T

g

I, = S - S H
1 1“?{(@ (9401

I, = T, [0(2) - 0, s
Iy = Tox7 [M(e) ~ Mo s

2
Ig = TynilLg) - L(go ).

After this, dzs t;, Pys Py and p; may be found according to relationships
(13.2). Coordinates q; and a4, (the latter, as has already been stated, is

the argument) are determined as follows:

1+Bcos @ 2
=X, ——l = i : - ; -2
e 11+Ecos ¢ 1 n2&n§ 1,=5% 1, .

The constants B and E were found previously (see step 5).

Reverse transformation to coordinates and velocities (in the spherical
coordinate system) is done by the formulas
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t-dV1+qI+qi;

1,9,

2
t - A
B Y T Qg

(the symbol y coincides with the symbol n):

Aedq,;

v, = r—(—af:q—z—)[ql(l +q,)p,—4,(1+4,)p, 1;
v2-=‘—i—21(—:—i;‘—‘—_-———2;‘1)(p2 —pl);.

v, P3

AT (17 4,0

This completes calculation of the coordinates and velocities at each
instantaneous point of the trajectory.

§14. Solution of Equations of Disturbed Satellite Motion in Rectangular
Coordinates

Equations of disturbed motion of a satellite in a rectangular coordinate
system with regard to terms of the second negative order of magnitude with
respect to polar flattening of the Earth were solved by A. A. Orlov in 1960
[76, 77]. These papers are a continuation of [75], where the same solution
was found only with regard to terms of the first order with respect to flat-
tening a. The ideas developed in these works were already present in [74]
(1953).

The practical value of A. A. Orlov's papers (and particularly of the
solutions published in [77] which will be taken up in this section) lies in
the fact that the relationships which describe the motion of an artificial
Earth satellite are derived without imposing any limitations on the initial /193
orbital parameters. Thus, they are valid for any initial values of eccentri-
city and inclination.

The Earth is represented as an ellipsoid of revolution with a gravi-
tational potential which contains even zonal harmonics:

—

V " 1 r02p (r04p
=7 |1+Cap T 20+C4o\’? ot t (14.1)
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Since A, A. Orlov considers only second-order polar oblateness, (14.1) con-

tains three terms corresponding to POO’ on and P4O'

The differential equations of disturbed motion

2
%y : y . 2 (14.2)

2 t2 t2 Jz

are written in the generally accepted geocentric inertial coordinate system
(axes ox and oy lie in the equatorial plane of the Earth, oz is directed
along the Earth's axis of rotation).

The problem is formulated as follows: to find the disturbed satellite
motion described by system of equations (14.2) (assuming the form of function
(14.1) given above) which would coincide with the Keplerian motion given at
the initial instant when ¢ = €40 = 0. The solution is found by transition

to a new argument--undisturbed true anodmaly ¥, given by the formula

k

Py

ko

1+€,cos \Sk

Four transformations of the coordinate system are then performed to represent
the motion of the ascending node and of the perigee of the disturbed orbit in
trigonometric form.

1. Conversion from coordinates x, y, z to coordinates x*, y*, z* by
rotation with respect to the oz axis through the angle

Q= Qo+u.\?-k; i = const;
x =x"cosQ ~y" sinq;

=x* sin Q +y* cosQ;
z2=2".

Conversion to the £, n, ¢ coordinate system by the transformation
b I

y* =ncosigy— §sinig;
z* =msiniy + Lcosige.




In this way the coordinate system £, n, ¢ is tied to the plane of motion (in
which the £- and n-axes lie) and rotates in absolute space at a variable
velocity.

3. Transformation of coordinates &, n, £ to coordinates gl, nys Cl

£ =g ;cosd —n, sinu;

n=E; sin U+ n,; cosu;
L= §1 »

where u = wg + (1 + A) ¢ A = const, represents a transition to a system

X’
rotating at a variable velocity with respect to axis 05 - As we see, the

motion of system El’ nys Cl is complex.

A. A. Orlov does not undertake to find purely periodic motion; however,
the constants n and A are chosen in the discussion which follows so as to
eliminate certain nonperiodic terms in the solution (in order to simplify its
form) .

4. The final transformation, which is used in [16], is to change the
scale of the coordinates

which varies together with T

The solution for the equations satisfied by the functions ¢, ¢, 8 1is
sought in the form of series in sines and cosines of the angles which are
multiples of u.

Substitution of these solutions in differential equations results in an
infinite system of equations of relatively variable coefficients (associated
with periodic functions); these coefficients are also sought in the form of
series in powers of the small parameter a:

& = ro/po)

where Ty is the equatorial radius of the Earth; Pg is the focal parameter of

the orbit.
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In its final form (with regard to coefficients of the potential expan-
sion <50° 050’ c40), the solution obtained by A. A. Orlov reduces to the

following algorithm,

The argument for description of motion, as has already been pointed out, /195
is the undisturbed value of true anomaly ﬂk. The coefficients associated
with the functions of this variable in the formulas given below are constant
which depend only on the initial conditions and should be computed before-
hand. The quantities Ay Ay (A. A. Orlov's notation) are equal to

9= 16501 = 0,109808- 1072 ¢ =c, = -0,151259-1075,

The initial parameters p,, a,

are some constants (constants of integration) and differ from the correspond-
ing Keplerian elements found for these same initial coordinates and velo-
cities.

s Eb which figure in the formulas given below

Relative to the possibilities of determining these parameters with
respect to initial conditions, everything holds that is stated concerning
this point at the end of §15. The simplest method in the given instance is
calculation of the constants Pg» 2> by means of iteration using the pro-

cedure described in §15.

The subsequent operational order with A. A. Orlov's algorithm is as
follows:

1. The constants Eb, u and A are calculated:
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225
32

105 o b

008210-0- 5_624? coSs 10) +

dr

2. The variables M, r , -4 U and @ are calculated for each given

value of the argument;?k:

R T  Potooin by
?
l+eycos ¥y $ (1+e, cos \9—,‘)2

8= wy+(1+2)8, 5 Q = Qg +ud, .

All subsequent computations are also done for the same values ofak.

3. R*, w* and ¢* are found:

po _ Py P ’

(2) 1, 5 . .9 g
R = —-54q Po(coszlo-smzlooo‘szu);

dr
-q [(cos lo-smzlocos u)p- k

3 LPo\. 2,
+ (—-é-+ 5 -i:>sm2xo'8m2u];

dr '
2 .
/z;( ) -4, rk(2 E—"—oosu - gfsmu)smxocoslo .

/196

——




4. The values of the functions R(4),w (4) and ¢ (4) are calculated:

4) 2 . 9. . 4
R( -%—r,‘(m(z)) +rk{l§§(—%+%smzlo+é%sm lo)+

2dk
+ = ==, -M)]+
T

. . 525
dor E5

3
(=4 ]

|

-
N




) -—L—‘:-.-+[q§( 3 sin 101%2 sin lo> +q‘(—§-+—sm ig -

r g 8
. P drk
_:ﬁ_f_sm ) ?0 (8, -M)+q (25 —gés-sm io— 46ism l)toz I8 *
k
2
15 75 2; 525..4; \(_7.8 Po_2 Po\Po dry jlfo1 2
+q4(——§—+-8—5m do— &g 1B lg)( +18 a, T3 rkz 2 d¢ ']:ng
105 (7 5P 1oPo_aPs
_%%q4>sm2l°+ (—ﬁq; +'3'§‘)sm4l°}(—'§-—"2‘ﬁ—°—+10r ’4[: l?‘k
2((_57 _455 Po) g 2; , (405 _ 13 PaY ; 4; | Po 8Ty 198
+q2[:( 35 39 T )sxn lo+(3 2-‘7 sIn*1, Yf as LA LA

+q‘(—-—sm ----—sm ><IS+l6p° 28p° 20 2—2%-

0.
2
k Tk
21,2 45 45 -2 105 4;
x cos 24 + [: q2+16q)sm l°+(32 -——-—azq)sm x(Jx

Po\P, dr st 57 _111Pg 451211 n2i 1425
x(~6+4—-]-‘- -2 K 0,‘+q 616 r 10-9-

Py 21 Po) . Py
+1_,52§___g_+.2_l..i:>s 43 ]*“14(15 sin?iy~ 32 sin 10>[ 2+32

2

Po\ P pg P3l t 3 3P

0 0 0

+ (-—38_245(-)-)-'—3*-47;?_20’_3 sin 2u+ q sin 10(6_4_:—_5?.—) +

. s . 2 . . .
x egsmlo cos 10-\9kcos2\?»+q2 sinigcosiy |~

P
[131 +_2_;1__q_+<953 _




Py p, dr /s P,
105 2; | Podry 105 .21 16 P
v 71:) sin lé‘ rz q5 k‘i === sin?i, mzocoslo<4 B ao+
1P 4P\ dr, 21 9 45 [ 135 2 315 ). o
*Fﬂ‘"l—s"_z‘),; g [O5HY 'k{_ 9164+ ("3 92 64 455 %0

p 1
X eg sinijcosiy. § sm28,‘+q siniycosig (7 -2 - 193 ro sin?iy )+
T, 16T,

1) /198
15 105»2) 3P0\ Po 2P0 11
+q (—-————sm i,}siniycosi, <—4+ T, tE5 T3 |{Smu+
4 16 S'a r, o ri
0 3; o .: J[ 45,2 105, Y,2 2fir 1 P
+1, sin®icosi, ( 39,751 q4>eo "‘1‘0"32‘9}*[‘12(6 t54 "k) "

2
P P By dr 1
+q, (_6_7_4,_._::_2_5}, °+Z_ &Z)]r—of d\‘?kJ cos 3u+r, sindigjcos ig x
k

45,2 105
( 6492764 4,

\_/

171 21 Po 33 P
€5 %sin 26,44 (128 128 a, " 16 rh> *

2 37
v |-117,183% (3 9 Po\% s1Po_ 1780l s,
4 128 128a0 2 da5)1, 8 ,2 8 .3 | *

5. The coordinates of satellite motion are found in the absolute geo-
centric system in the following order:

E=Rcosw; m=Rsinhw; g =2;:
*
xg;
y* =ncosiy ~ gsinig;
2* =qsiniy + Loosig;




X=Xx*cosQ - y*singQ;
y =x*sin Q@ + y*cos Q;
zZ=2z".

The algorithm allows for considerable simplifications if orders of
oblateness above the first are disregarded (it is assumed that qy = 0, q% = 0),

or if higher powers of e, are disregarded when the initial orbital eccentri-
cities are low.
In particular, when Qy = 0, q% = 0, the quantities x, y, z , as may be /200

readily seen, are simply equal to x = x(z), y = y(Z{.Z = 2(2), and the entire
algorithm for determining the instantaneous coordinates of motion is limited
to the first four points described above.

§15, Utilizing the Model of Two Attracting Centers for Solving the Problem
of Disturbed Satellite Motion

In this version of seeking the solution for equations of disturbed
motion, consideration is given to the force function represented in the form

fra 3 (RO>k z
V- T{h-kEka T P"(T) ’ (15.1)

where f is the gravitational constant, m is mass, R0 is the equatorial radius
of the Earth, Pk are Legendre's polynomials, Jk are constants which charac-

terize the figure of the Earth and r is the distance of the satellite from
the Earth's center. The rectangular coordinate system with the origin at

the Earth's center of gravity is selected so that axes x and y lie in the
plane of the equator, the axis z is pointed toward the vernal equinox and the
triplet x, y, z is right-handed.

Let us introduce the new constant

¢ =RovV-J,
and examine the force function

u-f—'f{n b (-1)"(

1Ly}

>2kP2k(?>}. (15.2)
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It is readily seen that the expressions for V and U from (15.1) and (15.2)
have different terms beginning with k = 3. This means that the force func-
tions V and U differ from one another by a quantity of the second negative
order of magnitude with respect to flattening of the Earth. Therefore, if an
analytical solution can be found for the problem of satellite motion in the
field of a body with force function U, then it is obvious that this solution
will be closer to the exact solution (corresponding to force function V) than
for instance motion along a Keplerian ellipse (this motion is defined by the
force function W = fm/T).

As shown in [78, 79, 80], the coefficients of the expansion from (15.2) /201
are identically coincident with the coefficients of the expansion in Legendre's
polynomials with respect to the argument z/r of the auxiliary function

fmf _1_) .

?-\?; i 7y

Here

. .2 / 2 .
r, -\[xz+y2+(z—w) 3 Ty = x24y24(z+0)°; i=V 1.

And so we finally take
/1 1\
U:———'+_ A
r \’1 "2) (15.3)

The equations of satellite motion in field (15.3) have the form

4 ou. &% _ou. @’z _au, (15.4)
di2 ~o9x°’ dtz oy’ 412 oz

System of equations (15.4) may be integrated in quadratures, its solution
being expressed in terms of the elliptical functions of some intermediate
variable. The relationship between this intermediate variable and the-time
of motion may also be established.

However, it is not always convenient to use the solution directly in
elliptical functions. To simplify its use, we take advantage of the fact
that the absolute values of the elliptical functions which represent the
solution of system (15.4) are small. These absolute values are of order
¢ = ¢/r*, where r* is some mean radius of the satellite's orbit. Substituting
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¢ =Ryv-1l, , we find that

R
r’

3"\/:_].2

-

Since r* is always greater than RO’ we have g < V—JZ >, and for the Earth,

€ < 1/30. Thus, the resultant elliptical functions may be expanded in powers
of the moduli. These series quickly converge for absolute values correspond-
ing to flattening of the Earth.

The final results are given below with retention of terms to e* inclu-
sive, taken from [80]. The solution depends on six arbitrary constants:

- . . - ] *
25, €9, 108 e QQ’ lk'iO" (15.5)

which generally speaking may be expressed in terms of the initial values of /202
the Keplerian elements. We note that all elements (15.5) become Keplerian

at € = 0, with the exception of the constant wa, which is expressed in this

case in terms of the Keplerian value of the angular distance of the perigee
(wg) in the form

wg mwy = m/2,

The method for determining these elements from the Keplerian elements will be
shown.

And so, if quantities (15.5) are known for the satellite at time tO’

then the coordinates of the satellite, x, y, z, and its velocities i, 9, z
may be determined at time t by successive application of the following
formulas:

1. The constant parameters which characterize the orbit are given
(these calculations are performed once for a given orbit):

. .® . 2
§ = sinig; p-ao(l-e';, }i e =c/fp;

- 2
€meolls e®(1~ey ) -25%))

m
n =\ /;f.a_{: ~§ 2(0-egN1ms2) 4} H(1-e3)1 - 52
[y}
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(24-98524+755%)3;

]

o2 4 2
x[1+11s%2—¢% (1-552)]— & (1-¢"
o (1-55%)] 16(1 €y )
92 2 e"'
v ==-(12 - 155 )+ Z7 [288 - 129652 + 10355 4 —
2
—eg (1444 28852 — 5105%)];
3 2 L, e
w==—3 ez[l-t-%;- e2(6 - 1752 - 24e, sz)Jco'sio;
Vav/l+v; Ta=pflew

2. For each given time t, we calculate

a) M= n(t —i0)+MJ;

b) by the method of successive substitutions, we find E from the
equation

E =M+esinE,

E = M may be taken as a first approximation for E;

c) we find the quantity € by using the equation /203
9 1+e , E
2~ \i—g €z

The relationships

sin @ = /1-€2sinE/{1—~€cosE);
cos 0 = (cosE —€)/(1-EcosE). (15.6)

may be used for determining the quadrant in which 6 is located. We note that
the angle 0 makes as many turns as E. Therefore, proper determination of 6
requires referring the value found from formulas (15.6) to the initial revo-
lution and adding [E/2n] 27 to the result;

d) we determine , su, u, v, Q, E, 7. ¢ & » ¢, Q7. N:
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W= v9+m3;
81 = —14'9232(1+55003 o) Zsin 2 (0+w)~ f 5 (2 — 35%)sin 0 ~
L 2¢+% (g — 115%)sin 2¢;

8
— - * — ‘..
Na=(1 +v)6+w3 + Bi; v--(l-v)(za—w;); Q= +Qy =R oG

—g—- 1+—é— eze",z(l—zsz)-»c;(l—%gech 52>cosv -
_12.e2e‘62(1—2$2)oo52v+§6—e2623s%os'?w;

Q = Q~ 26%¢jcosiysiny -—JZeze’ozcdsi‘osin?.v;

o =u+F-Fefs?l - ¢’)sin2y;

g {e;smv _ 60 134 - 3252~ (8 — 5sD)isin ~

-3 16 .
2 . : .
e2ely (1—252)51320+-1%-8262) s?sin3vp;

2 .2 2 .2 )
) (6-7s2+e% (2—s2)] -5 (1 — € )s? cos 2u;

¢
2
: ; o oL 2+ :+ .
ﬁ’-—%—ezcz:»Sl:)—ZezeSCOSlocasJ—':Ze 30 09510 mszv:
. Vispo
N - 2. 22122,
ErC“SCsn”

we determine the satellite's coordinates x, y, z and velocity

components X, y, Z:

X = E2rc2 (cos<pcos$2'—cosi‘osinqosinﬁ' ¥;
=/ €2 +¢2 (cos ¢ sin Q’+cosi5 singcos Q7 );

= E sin ISSmcp;

x : s . -
= N{ gziiz ~ VE%+c? (sing cos @' +cosig cos cpsinn’)q:-ysz'};

N =

e

y =N JYEE £2.c2 (~ sin sin @+ cosiy cos g cos Q7 ) G+X Q7 5
g2 +¢? 0
. ZE
z=N
{ g

4

+ gcos<psini;q;]’.

Arbitrary constants (15.5) on which the general solution of.the problem
depends, are related in a complex way to the initial values of the coordinates

and velocities of the satellite. For instance, let us assume that it is
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known that when t = t_, the Keplerian elements of the orbit to be computed

0’
are (giving the Keplerian elements is equivalent to giving the phase co-
ordinates and vice versa)

aox eo; io, 0)0, QO‘ MO' (15 7)

The values of parameters (15.5) must be determined with respect to elements
(15.7).

The inverse problem is solved by the formulas presented in steps 1 and

2 of this section. Here, by giving the arbitrary values of parameters (15.5)
when t = ty, we determine the phase variables

(o) ¥(tods Z(tg)y (ty)e V(ty), Z(Ey). (15.8)
If quantities (15.8) are known, the initial values of the Keplerian elements
a()(to)- eo(to): io(to)’ “)o(to)n Qo(to); Mo(to)'-

may be determined.

However, we are always interested in the reverse. In fact, the initial
values of the Keplerian orbital elements (15.7) are usually known for the
orbit which must be computed, and it is necessary to use these elements in
determining constants (15.5).

Our problem would be solved if we could reverse the formulas given
above, i.e. if we could write relationships of the form

a = f(x) t())’ (15.9)

where a is a vector from (15.5) and x is a vector in phase coordinate space. /205

This is rather difficult to accomplish, and besides the reversed form-
ulas for determining the initial conditions will, generally speaking, be
just as complex as the direct formulas used for predicting satellite motion.

We shall outline below the method proposed by I. A. Krylov and F. L.
Chernous'ko for determining elements (15.5) with respect to (15.7) using
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only direct formulas. Since this method may be applied to other problems
than the one treated in this section, we shall examine the procedure in
general form.

Let us assume that we know the relationships

£ *
o=jlag, e). (15.10)

Here a, and aa are understood to indicate one-dimensional vectors, and ¢ is

some small parameter. It is known that vectors a, and aa differ little from

one another, and when ¢ = 0,

[ 4
o =4y - (15.11)
From (15.10) and (15.11) we get
ag = flag, 0).

Hence, it follows that

(the existence and continuity of partial derivatives ?3f/ aa6 is assumed at

the given €). Here, E is a unitary matrix. If it is assumed that partial

derivatives 8f/8a6 are continuous with respect to g, then we have

~— E where &~ 0. (15.12)

Let us consider the iteration process

)

) «B) e
L(Bt1) =00—f(0.0(n ,e)+ﬂo(n . k(ao L&) (15.13)

0
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It may be assumed that

. (D
@Gg =2a4. (15.14)

Iteration process (15.13) with initial approximation (15.14) should converge,
since it follows from (15.12) that all elements of the matrix of derivatives

akiay, €)

: 0 as € >0, and initial approximation (15.14) is fairly close
da
0

to the solution of equation (15.10). Let us remember that the formulas
* N
a,=fley, )

are our initial direct formulas.

L)

And so, assuming aj

a,, we get

(2)
ay =ag-—flag, s)+ag:
L(3) (2)

(2)
* k-]
a, =a,-fQal ", e)+ay

(r) (n - 1)
The iteration process may be concluded when |az "as t is less
p Y

than the appropriately small number €; > 0 which we select. The described
iteration method was used in the computations.

When the given method is used for determining parameters (15.5) which
appear in the formulas of §15, it must be remembered that the direct formulas
determine the values of the phase variables, x, y, z, X, ¥, z. Therefore,
when these variables have been found from the direct formulas, they must be
used to compute the corresponding values of the Keplerian elements. In
addition, when € = 0, the parameter w§ is related to wg by the expression

*
0.)0= (00—7'5/2-

In the case where the Keplerian elements cannot be determined from the
initial values of the phase coordinates, the iteration process naturally will
not converge. For instance, if the initial phase coordinates from (15.8)
correspond to a circular orbit, then a singularity appears in the formulas
for determining the initial angular position of the perigee. Therefore, the
iteration process cannot converge.
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Let us nbte that Ye. P. Aksenov [81] [sic] reversed the formulas
given in steps 1 and 2 of this section and got relationships (15.9). Thus,
when quantities (15.8) are known, (15.9) may be used to determine elements
(15.5). 1In this case, the value of the parameter n from step 1 may be
determined with high precision from the initial coordinates and velocities
of the satellite (15.8).

As has been shown by calculations made at the Shternberg State Astro-
nomical Institute, using reversed formulas and the exact value of n gives
considerably greater precision to the approximate formulas in steps 1 and 2.

§16. Comparative Analysis /207

A practically usable algorithn which describes the motion of an arti-
ficial Earth satellite, should satisfy the following basic requirements:

--optimum correspondence (in the sense of selecting the coordinate
system, computational argument and make-up of the input information) to the
principal problem to be solved and adaptability to related problems;

--its systematic error should be no greater than the permissible error;

--it should be fairly easily carried out by available means of compu-
tation;

--it should permit modification to include additional disturbing
factors introduced through the improvement of practical techniques (for
instance the dissipative effect of the atmosphere as the strongest factor
which influences the trajectories of low-orbit satellites).

The first of these requirements can be considered only in each specific
case. For instance, where total information on motion is required (i.e. all
seven motion parameters), the method described in §15 which provides for
direct computation (without numerical integration) of the coordinates alone
cannot be used. If the specific nature of the given problem or the computa-
tional process makes it difficult to use rapidly changing functions, then
osculating elements are the most convenient system of parameters. This is
exemplified to a certain extent by the solution of problems in prediction
given in §17. It is also shown in this section how the appropriate selection
of a system of parameters facilitates the solution of additional problems
associated with the need for predicting the motion of artificial Earth

satellites.

The last requirement given above for algorithms stems from the unavoid-
able process of increasing complication in practical problems and improvement
of the technical systems in which these algorithms are used. Specifically,
it may be assumed that the permissible systematic error (i.e. the maximum
value of the systematic error .which permits solving the given problem) will
decrease in the course of time in many engineering problems, and more and
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more rigid demands will be imposed on the accuracy of describing satellite

motion. This requires accounting for effects of the second and higher nega-

tive orders of magnitude in the future! In the algorithms described in /208
§§12, 14 and 15, this problem has already been solved. Apparently , the
hyperelliptic theory (§13) may also be used as a basis for constructing a

theory of motion which reflects the effects of higher harmonics in the poten-

tial expansion. In principle, the effect of these harmonics may also be

accounted for by the method of expansion in powers of a small parameter

(811). Of course, as may be seen from the examples in §812, 14 and 15, these
additions entail complication of the algorithms.

In addition to accounting for quantities of higher negative orders of
magnitude in the gravitational effect of the Earth, it becomes necessary to
account for other effects commensurate with them (they are enumerated in §1).
Chief among these is the effect of the atmosphere in the case of satellites
with a comparatively low perigee (in this case, this effect may have a quite
appreciable magnitude). The introduction of factors of this type into the
problem may make it necessary to discard the given algorithm and work out a
new one. In some cases, however, (where the added effect is not great and
allows using a linear theory, as for-instance, in considering the effect of
the atmosphere), an attempt may be made to take additional account of the
new effect without reconstructing the available algorithm. This is obviously
most simply accomplished when the algorithms described in §811 and 12 are
used.

Of decisive importance in evaluating an algorithm are the simplicity
with which it is carried out and the magnitude of the systematic error.
Since all algorithms represent a more or less approximate solution of the
Cauchy problem the magnitude of the systematic error is influenced by two
factors: the accuracy of the mathematical model of motion and the error
inherent in the method used for solving this problem.

The model of motion in the given case (where the disturbing effect of
the Earth's eccentricity alone is considered) is determined by the model for
the potential of terrestrial attraction. In the case taken up by A. A. Orlov
(814), the Earth is represented in the form of an ellipsoid of revolution
with regard to the square of polar flattening (?). Accounting for the
second power of o yields appreciable results only for a protracted interval
of satellite motion (see Chapter Two). In the hyperelliptic theory (813),
only a certain part of the effect of a2 is taken into account, while in the
method of expansion in powers of a small parameter (§11) it is completely
disregarded. Since the effect of the square of oblateness (particularly /209

1 Of course this applies primarily to long intervals of time of motion of
the satellite.
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short time intervall ) is not great, all methods examined in this chapter
(with the exception of the asymptotic method described in §12) are approxi-
mately on an equal level from the standpoint of accuracy of the mathematical
model of motion. The errors introduced into calculations by this model may
be determined on the basis of the first and second chapters.

The model of satellite motion found by Yu. G. Yevtushenko by the
asymptotic averaging method (§12) is essentially different. This model is
more accurate than those in the other algorithms described here. The
approximate solution given in 8§12 makes it possible to calculate the evolu-
tion of satellite motion fairly readily and with a high degree of precision
over a considerable interval of motion; the algorithm is especially simple
in the case of nearly circular satellite orbits. It is important that the
approximate solution makes it possible to account for the effect of tesseral

harmonics.

The error inherent in the method is due to the suppositions and assump-
tions made in solving the Cauchy problem. All the algorithms described in
this chapter give an approximate solution of the problem, since even when
the solution is determined within the framework of the hyperelliptic theory,
a numerical result can only be obtained by use of expansion in series with
respect to powers of the small parameter.

The most effective procedure for evaluating ‘the error inherent in the
method is numerical comparison of the solution obtained by some theory with
the results of numerical integration of differential equations of motiom.

The system of differential equations should preferably be written in
the same system of parameters in which the solution is found; the mathe-
matical model of motion in both cases should naturally also be the same. /210

In this type of comparison, it is important to have a certain general-
ized error, or more precisely the modulus of this error which shows the
total deviation of the calculated motion due to the effect which the method-
ological error has on all the motion parameters to be determined by the
algorithm. Therefore, it is convenient to characterize the error inherent in
the method by the moduli of vector differences:

1 It is the interval of time over which motion is considered which determines
the advisability of accounting for such disturbing gravitational effects

as the square of polar flattening of the Earth. Actually, over short
intervals, this effect is so small that it should not be taken into account.
Over appreciable intervals, other effects such as the atmosphere must be
considered also. At great distances from the Earth, where the atmosphere has
little effect, the influence of the square of flattening will also be low,
even over a long interval of time.
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=19y =,1, (16.1)

Here the subscript M designates a quantity determined by integrating the dif-
ferential equations on a digital computer, while the subscript A designates

a quantity obtained by calculation according to the gnalytlcal relationships
of the algorithm being considered. The focal rad11 T =T (X,Y,2) depend

only on the coordinates, while the velocities Y=V (X,y,2) depend only on
the derivatives.

In view of the nonlinearity of tne system of equations which describe
satellite motion, the systematic error must be evaluated by calculating

differences of form (16.1) at various points in the proposed range of initial
conditions.

By way of example, graphs are given below for the change in systematic
errors of some algorithms as a function of the interval of solution of the
Cauchy problem.

Shown in Figures 107-109 is the change in errors Ar for the algorithm
described in §l1(the corresponding variants of initial conditions are given
in Table 35). The function Ar in the given case is that used in §6 (6.10),

and the error inherent in the method is' characterized by the tube shown in
Figure 3.

TABLE 35%
Variant ‘ Initial Conditions
Number _ o
‘ QO 30 (.l)o CO hA, km hn, km uo
17 {21 3 4 ) 6 7 8
1 I o |as5° - lo 300 | 300 [0
2 o |45° - 0 1000 { 1600 { O
s 0 | 45° 0 90,0489 | 1000 300 |0
4 0 |45° 0 0,7352 {36000 300 | Q
5 0 16354 | O 6,04¢ 1000 { 300 | O
3 0 0° 0 0,0498 | 10C0O 300 | O
7 0 8° o 0,0488 { 1000 306 1o

 Tr. Note: Commas indicate decimal points.
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TABLE 35 (Continued) * /211

1 2 | 3 4 5 | 8 7 |8
8 | 0 |45° | 45° |0,0403 | 1000 | 300 [45°
9 0 |0 0 |0,0499 {1000 | 300 | O
10 0 |45° 80° | 0,0498 | 1000 300 { O
11 0 }45° 45° | 0,0499 | 1000 300 | O
12 o |45° 0° | 0,0870 |4°10% | 300 | O
13 c |89° 0° | 0,0488 | 1000 300 {0
14 0 1° 0° | 0,0499 | 1000 300 | O
13 0 145° i 133° | 0,0489 | 1000 3001 0
Figs. 110 - 113 show the change in errors Ar = i;H - ;AI and At =
]?A - ;h[ for the algorithm described in §14. Here ;A is the position of

the satellite determined from the abbreviated relationships in step 6 §14,

while ;H is the same quantity calculated from the complete relationships in
§14.

The errors of Ye. P. Aksenov's method (§15) are characterized by the
quantity Ar(t), graphs of which are shown in Figs. 114 and 115.

To determine the error in the averaging method of §12, satellite
motions were computed by numerical integration of system (12.5) on a digital
computer for the following four cases

1) § =45°, @=L =g =k = 0, p = 8683,553 km;
2) i = 43‘1‘;, @ =L =k =0, g = 0,0499033798; p
6996,08681 km ;

8) i = 45°, o =L =}k = 0, q = 0,21692838, p
8126,84248 ki ; ‘

4) i - 45°, p =L =k = 0, q = 0,7281683, p
11515,7477Tkm

]

]

1]

i

i

For the first three examples, 100 revolutions of the satellite around
the Earth were calculated, while 40 revolutions were taken for the fourth
variant. The second and fourth zonal harmonics were taken into consideration
in the gravitational potential. Given in Table 36 are the results of compu-
tations of the evolution of satellite motion according to the approximate
formulas 1n §12 and the numerlcally obtalned exact solutlons (N 1s the number

*Tr. Note: Commas indicate decimal points.
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T1eC

TABLE 367

Varfant ¢\ o : | ? oo ‘
Number on Q . i Pe km - 4 k' L-360°N t,Hours, Ar,km
1“1 I. L y N '

] : i : ‘ .
‘ Exact 38°207327,88  45° - 6 663,5542 v,000241 —0,000663 —4°29"
1 : T 149,978314/ 0,27715
| Appropriate 2872072072 45 6 663,5526 0,000241 —0,000661 —4°43
Exact '34°46°387,5  44°59°56”,9 6 996,0006'0,040144 0,020337 3°15°46” |
2 " — ; : 1161,967653| 0,41809
. 7 ~ ] , ” i o 2 7 |
Appropriate S¥467357,6  44°597587,9 } 6 896,0088 0,040135  0,029336 | 3°15732
‘ 25°457417,2 ’44°59’5s",52; B 126,561 0,192876. 0,099085 | 9°52°37”
] Exact : ‘ ; 217,198162 | 0,62300
Appropriate|25°45°39”,6 | 44°59756”,54 8 126,5699(0,192873| 0,099081| 9°52°23”
Exact 5°077477,22 | 44°59°59”,44(11 515,687 (0,724892| 0,068956 | 4°50750”
4 : 422,05249 | 7,05845
Appropriate| 5°077467,94 | 44°59759,30(11 515,670 |0,724898 | 0,068809 | 4°50"37”
* Tr., Note: Commas {ndicate decimal points.



of revolutions of the satellite around the Earth). The dimensional time of
motion is indicated in the next to last column of the table, and the error
Ar in determining the radius-vector of the satellite is given in the last
column.

The approximate formulas approach the exact solutions with a high
degree of accuracy. The precision is especially high in the case of nearly
circular orbits. The error in determining the position of a satellite after
100 revolutions around the Earth is 277 meters. As the orbital eccentricity
increases, accuracy falls off, and for eO ~ 0.2, the error in satellite

position is ~7 km after only 40 revolutions. The error in determining the
focal parameter is no greater than 20 meters in any case. The error in
determination of the angular elements Q, i and L is less than 20".

41, TN
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Fig. 107

The important characteristics which determine the practical value of
the algorithm are the size of the systematic error, the number of elementary
operations and the storage volume necessary for carrying out the computation
on a digital computer.

These data for the algorithms considered above are summarized in

Table 37 (the systematic error in the given case is what was previously
called the error inherent in the method). Indicated in this table are the
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(which corresponds to 8663,85 km<p < 11 805,23 km, 0< e, < 0,7382).

In cases where the algorithm permits accounting for both first and second
powers of flattening, figures are given which characterize each of these
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TABLE 37 *

© Algorithm Algorithm t Algorithm = Algorithm “Algorithm
| No. 11 No. 12 i No. 13 | No. 14 . No. 15
— 0
@© >
—~ > [+ I
] 0 Lo
! Q o)) U Y= ‘
m\c; ! % ™~ E‘ 0o (
i £ o 2 & =g ¢ E E | E
I — L 1T , o®m o < o £ | o £
s 2 D828 12 T GSE 5 oZ PR i
. (R FE RN EQ; | —_ -_ —_
. .
52 |5oed |syicy £B Y EEES
S < o< - w © S04 O « S| 8=
', ’ i
Systematic | , ' 1 ‘
Errors on an, E | _ : ‘ !
Interval of:. f | ‘ i ; |
one rev- !%:55'{'5122 ORI ar<0,1kn <04 km<cozkm < 0,2kn
olution S0 ’ . Ar <1 knm , :
AY <2,5°km | AT <0,2 km'<3,2 km <3,5km <2 km
one day 54 <o0,3sec | : TR T e e i
No. of ! ' ‘i | ; }
Operations 250 (; 220 ‘ 1000 , 3000 Poaoh o - 700
) 1 W 3 4
. \ b I ‘
Number of
Numbers 1n . 200 200 300 700 190 - 220
the Computer

Note: The number of the algorithm corresponds to the number of the section in which
it is described.

1¢

~  Tr, Note: Commas indicate decimal points.



variants separately. Also, in a separate column are the figures correspond-
ing to abbreviated algorithms (where such abbreviation is possible) in which
quantities proportional to powers of eccentricity above the first are omitted.

In calculating the necessary number of operations and the required
storage volume, no consideration was given to the calculations involved in
converting the input quantities to the system of parameters which is used in
a given algorithm or to those associated with reverse conversion of the quan-
tities determined according to the algorithm into some other system of co-
ordinates or parameters. It should be borne in mind that in certain instances
(for example in the algorithm from §§14 and 15) the machine time required for
carrying out these computations may be nearly the same as that for carrying
out calculations by the algorithm itself.
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"In studying the sciences,
examples are no less instructive than
rules."”

I. Newton

Chapter Four

SOME EXAMPLES OF APPLICATION OF THE ANALYTICAL THEORIES
OF MOTION OF AN ARTIFICIAL EARTH SATELLITE

The analytical theories of motion of an artificial Earth satellite may
be most extensively used in solving various practical problems associated with
the investigation of space and space flights.

Possible solutions for three such problems are given by way of example
in this chapter. Of course in this regard, any analytical theory may be used
(the one given in the Third Chapter or any other); however, the system

selected in 817 has certain advantages for solving the problem of prediction
(and related problems).

§17. Predicting the Motion of Artificial Earth Satellites

The problem of predicting satellite motion arises in connection with
planning the trajectories of spacecraft [3], in connection with tracking a
satellite from ground-based observation points for purposes of research or
control, recognizing (identifying) it among a host of others of no interest
at the given time, and in other similar problems.

Let us formulate the problem of prediction in a given instance. Let us

_ 0 0 .
0i = {to, Xysenes XN} which char-

acterize motion of a space vehicle when one of the variables t = tO is known. /221

Application of the operator Sti transforms FOi to the set Fti = {t, xl(t),...

v xN(t)} , which characterizes motion of the vehicle at any value of t:

assume we are given the set of parameters F

in = Szini'

(17.1)

In this regard all Fti (accordingly FOi) are elements of the set Ft
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ingl kil : = 7. = UF_.. =
(accordingly o FO) F gh F %F i Thus, we also have Sti € St

= U3, ..
1 t1i

Let us call the process of applying'operator Sti prediction of motiorn,

the variable t we shall call the argument of prediction, and the interval of
variation of the argument (in the given case t - to) will be the interval of
prediction.

It is assumed that the set F_, is given in the case of prediction, and the

0
problem reduces to merely determining the specific form of the operator Sti’

although the manner of recording this operator depends on the type of selected

subset of FO. The selection of Fti in particular, dictates a more or less

complicated formal notation for the operator of prediction.

The motion of the center of gravity of the satellite is determined by
six independent parameters given at a known moment of time. The general form
of the operator of prediction Sti in this case, is a system of nonlinear dif-

ferential equations of the sixth order. Prediction actually reduces to solv-
ing the Cauchy problem, and FOi represents the set of initial conditions. This

system of equations, as has already been pointed out above, may be solved only
by numerical or other approximate methods. Thus, the use of the prediction
operator unavoidably introduces systematic errors into the quantities Ft'

In finding the form of S_, we should strive to satisfy the requirements

t’
formulated in 816 and, in particular, the following two conditions:

-- the errors in determining Ft should not exceed the permissible value;
-- the formula for the prediction operator should be as simple as possible.

In the case where prediction is to be used in tracking a selected satel-
lite or is associated with identification of the given satellite, additional
requirements arise out of the need for solving related problems.

In practice, sets F.. may be determined only in the statistical sense and /27

0i
are therefore, characterized by the distribution functions for the parameters

0
DOi = Di(to, Xy5e-

some other distribution function Dti = D, (t, Xl""’ XN), which is defined as
i

0 . . .
. xN). Application of the operator Sti replaces DOi with

Dii = @(5,;0D,;. (17.2)
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Consequently, the result of prediction, even in the case of a regular
operator Sti’ is statistical, and it is difficult to find the form of distri-

bution function Dti in view of the nonlinearity of the prediction operator.

The problem is complicated still further by the fact that the operator
Sti is not regular even in the case of strict formulation. Actually, if we

recall for instance, that the parameters of the Earth's gravitational field
are known with a random error (since they are determined statistically from a
number of measurements) or that the parameters of the upper atmosphere may
fluctuate in a random manner, then the coefficients in the system of differ-
ential equations (which comprise the operator Sti) must also be statistical

in nature.

At the present time, there is no knowp analytical method for solving the
Cauchy problem for a system of nonlinear equations with random coefficients.
Therefore, the following two methods may be mentioned for solving the pre-
diction problem.

One of them consists of determining the parameters (which are random
quantities) from observations of motion together with the initial conditions
necessary for solving the Cauchy problem. Therefore, they are included in the

statistical set FOi and the operator St' itself becomes regular.
i

In this way we may account, for instance, for the random nature of var-
iation in the density of the upper atmosphere and in the aerodynamic charac-
teristics of the space vehicle under consideration. In this case, some gen-
eralized parameter, which unites both the above-mentioned quantities, may be
statistically determined together with the motion parameters from information

obtained on the basis of observations and may be included in the set FOi’ which

now becomes more than just the set of initial conditions.

A priori data on random parameters in many instances may carry consider-
ably more statistical information than a posteriori data determined during
the limited time of observation of the space vehicle (in particular, this will /223
take place if an attempt is made to refine the parameters of the geoid from
information obtained over several sessions of observing an artificial Earth
satellite). When the a priori statistics are sufficiently great, we may use
the second method for solving the prediction problem, in which we utilize only
a priori information on the random parameters appearing in operator Sti' In

this method, mathematical expectations for the random guantities are intro-
duced into the prediction operator, and then one of the methods is used for
estimating the errors in determining parameters Fti due to random deviations

of the coefficients of operator Sti from their mathematical expectationm.
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Although the first method for solving the problem is mathematically more
refined and stricter, it complicates considerably the process of determining
the elements of set FOi' The second method may be used for fairly readily

solving the prediction problem, but under condition that the errors in Fti

which arise in this case are within limits which are satisfactory for us. In
this case, the operator Sti may be simplified by disregarding some of the

forces which act on the space vehicle and estimating the resultant error in
the elements of Fti together with the errors due to substituting regular para-

meters for the random parameters of the differential equations. Thus, we may
arrive at a compromise solution in which the operator is comparatively simple
in form, while prediction errors are no greater than the predetermined values.
For instance, if we assume that the prediction operator describes Keplerian
motion of an artificial Earth satellite, we get the simplest form of Sti;

however, in this case, errors are introduced into the position of the satel-
lite as determined, resulting not only from disregarding the random values of
the parameters, (e.g. the error in acceleration due to gravity on the surface
of the spherical Earth) but also from disregarding a number of effects which
disturb Keplerian motion of the satellite.

By using the estimates derived in the preceding chapters and the method
for numerical solution of the Cauchy problem in the case of motion in the
field of various gravitational models, we may use this particular method for
constructing the prediction operator. Thus, selection of the appropriate
model of the Earth's field is determined by the permissible value of the
systematic error. The prediction problem may be more quickly solved by using
an algorithm based on any of the analytical theories as the operator St
Again, however, this is possible only when the systematic error is within the /224

permissible value.

In solving problems involving identification of the satellite as well as
prediction, it may be advisable to use an algorithm constructed in a system
of osculating parameters. Since the orbits of artificial satellites designed
for solving special scientific problems may have the most diverse eccentri-
cities (including those nearly equal to zero), preference should be given in
solving such problems to using a system of parameters such as @, i, p, q, k,
t (with argument u) or @, i, p, q, k, u (with argument t) or similar systems
of parameters (i.e. without singularities over the entire range of eccentri-

cities).

The number of artificial satellites and various cbjects (such as the
final stages of rockets) revolving in satellite orbits increases continuously
with time. In this situation, the necessity for systematic observation of
satellites designed for some scientific research or national economic assign-
ment will involve the necessity for distinguishing them from other of less
interest at the given time, i.e. for checking the parameters of satellites
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under observation (or their trajectories) against known values! . The large
number of space objects may require nearly continuous comparison and reference
to the catalog. Since the parameters of the observed satellite are determined
in some single instant of time, while the parameters of other satellites
(recorded in the catalog) with which the comparison is being made are referred
to other moments of time, the process of identification will inevitably in-
volve the necessity for nearly incessant repetition of motion prediction
(determination of the orbital parameters). Therefore, it is advisable in
selecting the operator S¢ in a given instance to look toward simplification

of cataloging and identifying the satellites as well as simplification of the
solution of prediction problems. For instance, the use of osculating para-
meters may permit carrying out identification and prediction in several stages,
which in turn may save time and simplify the general algorithm for solving /225
the entire problem as a whole.

As an example, let us examine the manner in which such a complex problem
might be solved using the results described above. In this case, the values
of the orbital parameters of cataloged satellites could be arranged in increas-
ing order in each of the corresponding seven groups:

Qg ios Por 949> Rao to' oo (17.3)

In this case, the satellite under observation may be identified with one of
those cataloged in several stages with successively increasing accuracy.

In the first stage, elements (17.3) are assumed to be constant (with the
exception of t and u). In other words the prediction operator corresponds to
Keplerian motion in the given case.

By successive comparison (with respect to the groups of parameters in-
dicated in (17.3))between the orbital elements of the satellite under investi-
gation and those recorded in the catalog and by eliminating satellites with
"unsuitable'" values of these quantities, a certain number of satellites may
be isolated which are listed in the catalog and which have orbital parameters
close to those of the given satellite. The algorithm for sorting parameters
in the first stage of comparison may be most advantageously arranged to save
time by taking account of experimental entropy.

Participating in the second stage of comparison are only those satellites
which were retained after the first stage (it may be assumed that there will
be comparatively few of them). The prediction operator Sti in this case may

be constructed on the basis of one of the algorithms given in the third
chapter. As a result of the second comparison, the satellite under

1 These parameters may be summarized in catalogs stored in the memory units
of information machines.
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investigation may be identified with one of those contained in the catalog
(if the orbital parameters predicted by operator Sti and those of the satel-

lite in the catalog agree with the required accuracy), ér it may be found that
this satellite has not been previously cataloged. It is also possible that
the predicted parameters of the orbits of several satellites will be close to
the given parameters after completion of comparison in the second stage.

In the latter case, a third checking stage is utilized (the number of
satellites to be compared in this case will obviously be fewer than in the
second stage) in which an operator S i which accounts for all possible dis- /226
turbances is used for prediction. In~ this case, utilization of the operator
reduces to numerical solution (on a digital computer) of the Cauchy problem
for the system of differential equations of the given type.

The given example of possible joint solution of the problems of pre-
diction and identification shows how the form of the operator Sti and the

system of parameters in which the prediction problem is solved may be selected
for simplifying the algorithm and reducing machine time.

§18. Effect of Inaccuracy in the Values of Geophysical Constants

The presently existing possibilities and methods for determining the
constants which characterize the force field and figure of the Earth inevit-
ably entail errors in the determination of these constants. It is of interest
to evaluate the uncertainty contributed by these errors to the calculated
satellite motion.

An analysis of this type has already been given by I. M. Yatsunskiy [81].
In this section we shall give relationships derived in another way which are
fairly simple and convenient for qualitative analysis and approximate com-
putations.

Basing our discussion on the estimate of the effect of higher terms in
the potential expansion (which, as has already been pointed out, depend on
such comparatively ''fine'" shades of difference as higher orders of polar
oblateness, equatorial flattening, hemispheric asymmetry, irregular distri-
bution of the Earth's mass, etc.), we shall limit ourselves in the given case
to consideration of model B. And,sc we shall find out how errors in deter-
mining the equatorial radius of the Earth (r,), polar flattening (c) and the
constant u = fM affect satellite motion in the field of a spheroid which
is described by the zeroth and second zonal harmonics in the expansion of the
potential

! The angular velocity of the Earth's rotation is now known fairly accurately /226
(to six significant decimal places), and therefore the error in this constant
may be disregarded.
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Let us use for this purpose the solutions derived in §11 (from the
results of §16, we know the precision with which true motion is represented
by these solutions). For the sake of simplicity and uniformity in obtaining
an estimate, we shall assume that the second and third equations of (11.1) are /227
written as usual with respect to the functions i and p. This has no appreci-
able adverse effect on the accuracy of our results. The corresponding solu-
tions in this case derived in place of the second and third equations in
(11.9)) will take the form

i= io+'1§ ssin2iol} A(sinzu)—%-qu(cosa u)+é-k0A(sin3 uE, ;

P=py+2p,e stiOE A(sinzu)-—%-q0 A(cos3 u)+%—k0 A(S'm3u] .

Now the equations with respect to all five functions Q(u), i(uw), p(u), q(u)
and k(u) may be written in the identical form

F=F +¢F (u). (18.1)

Here, F. = const, while F*(u) is conditionally assumed to be dependent only on

0
the angular argument u. All the geophysical constants named above appear only

2

C rO
20 =~

Pq

in the parameter e = 3

On the basis of (5.9)

while m, on the basis of §5 (with an accuracy to quantities of the first
order with respect to a), is equal to

m=w273/p..
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Thus
r

2 A Y
de 2'0
dJou = T g2t
Pa
Q_§~2_€_+3m£2.}
or, 1 2’
0 0 P,
2
ge __m Ty
du B p2°
%) )

The logarithmic derivatives of expressions (18.1) are equal to

1 o(F-Fy) de -1,

= 2= ¢ ;

F—Fo Jo B do.
1 HF-Fy) 456 1.
F-F, 9T, arg° °
| AF-Fp) g
F-F, 9 B

(18.2)

and from the standpoint of linear theory (which is valid in view of the small-

ness of errors da, Sro, Su) we may write

n 8 F, de 1 )
8F0~ = F—.Fo = *—aa e 6“;
_ &F,
SF - b = .-Qi _1 ‘\-
ry F—Fo aro © 51’0 ! r
= 8 F,
F oot _98 15,

226
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The quantities 6?&, 6?& and 6?;, as well as the post-orbital relative errors

0

in the orbital elements, represent the error in the element due to uncertainty
in the corresponding geophysical constant referred to the disturbance of this
element by the second zonal harmonic of the potential.

Substituting (18.2) in (18.3) we get (with regard to the fact that Cho <

< 0)
s 25
5Fm u—Z%e"lSa-é—E—a-,
P 20
]
4 g
oF, (275 vom e org o (2- 2L
° ] p 20/ 7@
0
fz 5
=3 B o _~1 n (o
BF m = —— ——— 8}&‘—"'_“_"0
L e p 3Cyo ®
0
The expressions
v 2 bo
oF, =222,
& 3 Gy
— &r
m 0
8F, = (2 - —) —3
To ( c20> ry ' (18.4)
sF -
B 3gy ¥

solve the given problem (the constant c,, is taken here with a positive sign).

20
As may be seen from these expressions, the relationships for errors in oxbital
elements (as a function of the angular argument u) behave similarly to the
relationships for the perturbations of these elements. Consequently, it may
be concluded on the basis of the results of §7 that errors in the values of
the geophysical constants will have a maximum effect on the focal parameter
and inclination for values of the argument u = 90° and u = 270° (assuming

uy = 0); the effect on the longitude of the ascending node is greatest when

u = 360°, etc.

Since o *m (see §55; the difference between them is equal to approximately
3% of o), if we assume o = m we get

2 1 1
1620 l = 3“(&"5”‘): §-a.
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Therefore, from (18.4) we have

S'Fa = 2 ba /o;
BFrox—afo/ro; (18.5)
SF“ - 8“-/“"

with an accuracy completely within the tolerance for the given estimates.
Relationships (18.5) show that the relative errors in the values of T, and u

have an identical effect (with respect to numerical value) on the relative
errors in the orbital elements; the effect of the error in oblateness (o) is
twice as great. It follows from the second relationship in (18.5) that GFr

0

and 6r0 vary with opposite signs. The reason for this becomes clear if it is

remembered that a positive value of 8r, is equivalent to an increase in radius

0
Ty» and when the values of a and u are the same, this should result in a

reduction in lczol , which in the given case characterizes the entire disturb-

ing effect of the aspherical Earth.

The maximum relative errors 6a/a, Gro/r0 and ép/p may presently be given

the following approximate values

So/a = 0,180 103;
8ro/ry = 0,136- 104,

du/p = 0,301+ 1079, (18.6)

Given in Table 38 are the maximum values of the absolute errors in the /230
elements 82, 8i, 8p, 8q and Sk calculated over the interval of a single revo-
lution for an orbit with parameters: ., = 0, i0 = 45°, Py = 6,996,086.8 m

0
and e, = 0.04990338, w. = 0, u, = 0 (variant 7 from Table 10) assuming the

0 0
errors in the constants given in (18.6). Also given in this table is the
value of Ar calculated from formula (6.10).

In the given case, the values of &Qp, Sig, Spp, 6qp and Skg were all taken
as maximum , which in reality cannot take place. Therefore, Ar is a five-
dimensional sphere within which the parameters of the orbit will always be
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located for the given errors in the geophysical constants.

TABLE 38
Effect | sa | si |op, x |6g-105]8k-105] ar,m
8o/ 0~,50 | 07,050 | 3,60 | 0,65 | 0,740 | 23,0
8rg/To 07,03 | 0~,004 | 0,27 | 0,05 | 0,058 1,8
u/u 0”07 | 0”008 | 0,80 | 0,11 | 0,230 | 3.5

*rr. Note: Commas indicate decimal points.

The figures in the last column show that errors in the geophysical
constants have very little effect on the trajectory of the satellite over the

interval of a single reovlution.

§19. Dispersion of Ballistic Trajectories

The uncertainty of a number of factors which affect rocket motion (aero-
dynamic characteristics of the rocket, atmospheric density, parameters of the
gas in the combustion chamber, etc.), and the impossibility of absolute ac-
curacy in maintaining controlled quantities (for instance errors in the
position of the thrust vector and the engine cutoff time) lead to errors in
the phase coordinates! - at the end of the powered segment. This in turn
results in dispersion of ballistic trajectories, i.e. the trajectories of
rockets and satellites over flight segments unaffected by active forces. The
value of this dispersion gives information necessary for evaluating the pos-
sibility of carrying out a planned study program with application to the
given space vehicle.

In the mathematical sense, determination of the dispersion of ballistic
trajectories is no different from the problem described by relationships
(17.2) and (17.1), assuming a statistically given set FOi and also (strictly /231

speaking)a statistical operator Sti' Disregarding uncertainty as to the

forces acting over the segment of ballistic motion, it may be assumed that
the operator Sti is regular.

The computation involved in this problem may be carried out with adequate
rigor only on a digital computer, and is based on the theory of statistical

solutions. The diagrammatic structure of the algorithm may be represented

1 That is, in the coordinates and velocities of the rocket's center of
gravity.
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as follows:

— , v

Initial Random- | Unit for Statistical
Conditions| [Number Solution Analysis of
Generator =¥|of the —>{the Results
Cauchy
N Problem
*
Statistical

Characteris-
tics of the
Errors in the
Initial
Conditions

Fig. 116

The statistical law which governs distribution of the errors at the end
of the powered segment (Gaussian distribution is assumed as a rule) and the
numerical characteristics of this law (the matrix of the second moments) serve
as the initial data for the random number unit. On the basis of this informa-
tion, this unit generates the values of errors in the initial conditions which
conform to the distribution law with predetermined characteristics. The errors
are added to the nominal values of the initial conditions and fed to the unit
for solution of the Cauchy problem. Thus, each solution is a random realiza-
tion.

Another possibility is to feed the matrix for the second moments of the
initial conditions (rather than the errors) to the random number unit.

By giving the reliability of the results in terms of a numerical charac-
teristic (confidence limits, see for instance [82, 83]), we find the neces-
sary number of random realizations (solutions of the Cauchy problem) which
satisfy the initial conditions as given by the random number unit. Statistical
analysis of these solutions® provides us with a basis for determining the
mathematic expectation for the position of the terminal point in the space of /232
the given parameters, and for finding the matrix of the second moments.

This method of solution involves a rather large expenditure of machine
time (e.g. more than 50 realizations are needed to obtain a result with a

1 It is arbitrarily assumed that the solutions also conform to Gaussian law,
even though this law, strictly speaking, is deformed after solution of the
Cauchy problem due to nonlinearity of the operator St'
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reliability of approximately 0.9). In a number of calculations, particularly
those of a preliminary nature, it is important to have a procedure for accu-
rate but fairly simple determination of the boundaries of the maximum region

in which the multidimensional tube of the trajectories will be located for a
given dispersion of the initial conditions. It is known that in the case where
the statistical variable conforms to Gaussian distribution law with standard
deviation o2, the difference between this variable and the mathematical expec-
tation is no greater than 3c with a probability of 0.9973. A deviation equal
to 30 is ordinarily called maximum.

Assuming that the standard deviation (and consequently the maximum
deviations) of the initial conditions is low, we may write within the limita-
tions of linear theory

aS,
SF = SFO'

: = aF (19.1)

The symbol BSt/SF designates the operator obtained after differentiating

0

St with respect to the elements of the set F; aFt and BFO are the final and

initial maximum deviations respectively for the elements of set F.

Thus, we may use any of the analytical theories described in the third
chapter for finding the dispersion of trajectories over the ballistic segment
with regard to the effect of eccentricity of the Earth's gravitational field.
In this connection, it is advisable to select a simpler algorithm (a perfectly
natural desire), and to restrict ourselves within this algorithm to the most
appreciable effect of eccentricity, i.e. the effect of the second zonal har-
monic. Actually, the contributions to the result are vanishingly small when
the part of operator St which accounts for the effect of the higher harmonics

of the potential expansion (these parts enter St additively; see Chapter Three)
is applied to the deviations in the initial conditions.
Assuming for instance, that the prediction operator is constructed accord-

ing to the algorithm described in §11, we may expand expression (19.1) into
the following set of equations:

3% 39
8Q = ayz 690‘“3: 5‘o+ap 8p, aq05q0+ 6k0+au 8 g; (19.2)
) ai
81 = -7—8Q+ 51 8P, + 25 5
690 az o+ap0 po aq q0+ak0 k0+ uo 6“0, /233
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ap ap 9P sp . 9P ap
op = aszosg°+a 8igr—— 3, 5py+ 3 Bq"*a P 5ko+ Jp auo,
sq*%m"‘LW 81°+;T8p0+3q G+ L 8ky + 8“ov r
o 0 I "0k, (19.2)
Jk. ak 3k . ok . ak gk '
ok = 5, 0 0%+ 3 0810 an, 6p0+aqosqo ak, ——8ky+ auo. J

All partial derivatives in (19.2) are obtained by differentiating equa-
tions (11.9) with respect to the initial values of the parameters; the quan-
tities 690, Gio, Gpo,... are the errors in the initial conditions (the set

6FO). Since the partial derivatives are functions of the angular quantity u,

the functions &89, 8i, 8p,... describe dispersion of the ballistic trajectories

(the set GFt).

If the set GFO is given in the form of maximum errors, then the tube dFt
is also a maximum. The awkwardness of the expressions for 52/3%g, 89/810,--.,
91/9%g, Bi/aio,..., etc. is offset by the fact that equations (19.2) may be

used without recourse to solving the Cauchy problem for determining dispersion
at any point of the tube with regard to eccentricity of the Earth's gravita-
tional field.

Equations (19.2) describe the dispersion of orbits; in order to find the
dispersion in the position of the satellite itself, equations (19.2) must be
supplemented by an expression of the form

Bt=81(62, Bigs 5P 8gr Bkgs Blhgs 20 10Dy g Rostor )
(19.3)

or

B =8U(5Q, dig, 8P 5 845 8R gy Sl gy RgsisPyrGgr R o5 E) » (19.4)

In case (19.3) the argument is an angle (e.g. the argument of latitude
u), while in the second case the argument is time t.

Relationship (19.3) may be represented in the form of the equation
st =t'sig+tPop +t76q +t* okotsu, (19.5)
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where

-+ —
ai 9p q ak
1 (19.6) /234

p_dt;p dt,p 9t ¢  JtL P —_—
t ail +app +aq +a ’
Y . Y . - [ - - . : . . . . ) 4
t¢ = ig_.

du J

The partial derivatives in (19.6) are obtained by differentiating the
known expression (11.10):

at 1 fusm2lsm2u du 3
9t Ve . VPR

at 1 2isinZn
ot L du——ep .C.‘u__d
e SR bns [ egptnal,

[+]

3

/A
ot 1 “pPcosu cos 2isin?ucos U
ot _ 1 |9 sin“kcos U , (19.7)
o e el |

Ao
‘"=—ll:2 JLALLIY e’ | coi&gﬁldu]
3
u

o R 5, VPR
at 1 pl‘/2 Y coszlosm2
LI 3 . ¢ R ep 2

u
0
ouy Vi (1+q cosuy+ kosinuo)z 0 1+‘10°°s“o+k0 sin "‘]

Here € is a small parameter (see §11), R = 1 + g cos u + k sin u, and the
functions i, p, q and k in the integrands are to be substituted from (11.9).

The symbols il, pl,..., ip, pp,..., etc. denote partial derivatives 81/310,

ap/ai s e, ai/ap , ap/apo,..., etc. which also appear in relationships (19.2).
In computing expre551ons (19.6) , they should be placed under the integral
signs in (19.7), although in (19.6) they are arbitrarily represented as the
products

i gt

at
—1i p ¥

61 ap q s sen
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Thus, the computation of dispersion §t from formula (19.5) reduces to
numerical quadrature of relationships (19.7), the integrands of these relation-
ships being multiplied by the partial derivatives. ai/aio, ai/Bpo,..., while /235

functions i, p, q and k are given by equations (11.9). This method is un-
doubtedly awkward, and it may be preferable to compute &t as the difference
between integrals (11.10) taken for the nominal values of the initial para-
meters and the same integrals taken for the "divergent''values (with regard to
errors 610, 6p0,...).
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Appendices to Chapter One

I. EXPANSION OF THE GRAVITATIONAL POTENTIAL OF THE EARTH
IN A SERIES WITH RESPECT TO SPHERICAL FUNCTIONS

An infinite series representing the gravitational potential of the Earth
may be derived most naturally by finding the expansion with respect to certain
functions directly related to every particular problem to be considered and
to what might be called the specific essence of the process being studied.
These functions are called the eigenfunctions of the problem.

First, let us assure ourselves that potential (2.4) is a harmonic func-
tion, i.e. that it satisfies the Laplace equation

(I.1)

It is sufficient for this purpose to differentiate (2.4) with respect to x, y
and z as parameters, and to substitute the resultant expressions

2 — P
"V ] 3zx-x_)
st =1 § e F e
xm ym zm - =
2 — 2_
9°V . 1 3y=y)
S e[ e
y x ¥y z_ =
" 2
2V M 3(z-z,)
az?t fxg yS Szp_” r ]dx’"dy"‘dz”‘

in (1.1)17

1 In the case where (x,y,z) is the internal point of a region, the function
V satisfies the Poisson equation AV = -4nfp. In this case the function

p(xm,ym,zm) is required to be piecewise-continuously differentiable in the

given region.
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In this way, we are convinced that (2.4) is the solution of the Laplace /23,
equation!. o

Let us now present this solution as a series in eigenfunctions. For
this purpose we take the relationships
X =T sing cos A} (1.1
y = rsin ¢ sin A7

and convert to spherical coordinates: radius r, spherical latitude ¢ and
longitude A, in which the Laplace equation is written as

. af20V), 1 afg 8V, 1 3"V o
AV("“"")"gf(r ar)+sincpa<9(smpa<9 oinly N (1.2

The problem in which we are interested (the so-called first external
boundary problem or the external Dirichlet problem for equation (I.2)) may be
formulated as the problem of finding the function which satisfies equation
(I.2) in the space outside some closed surface (while simultaneously satisfy-
ing the previously mentioned condition at infinity) and takes on given values
at the boundary. We shall take sphere & with radius ry as the boundary sur-
face.

In determining the form of the terrestrial potential, the function V is
sought outside the volume bounded by the surface of the Earth, which is not
spherical, but is nearly spherical. Therefore, T, may be understood to mean

the greatest radius of the Earth (roughly--the semimajor axis of the equato-
rial ellipse). The boundary conditions are given on this sphere, and a solu-
tion is sought which satisfies the boundary conditions given on the surface
of the Earth.

The validity of this approach is explained by the stability of the solu-
tions the boundary of the region varies (this point is taken up in detail in
[84]; the intuitive premises for the given approach are not only in the simi-
larity between the selected sphere and the Earth's surface, but also in the
fact that the constants appearing in the solution are actually determined by
measurements made on the real surface of the Earth.

The condition for function V on the surface of I is /2

V(r, @, %)) = w/7g

i i i for the external /23
1 i lso required for uniqueness of the so}utlon S € 1
Diizcﬁie% ;roblgm that the function V must satisfy the condition at infinity
V>0 it is immediately clear from (2.2) that the potential of a uniform
oher The same may be shown for potential (2.4)

sphere satisfies this requirement.
(see [31, 44, 45, 1, 2].
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The remaining boundary conditions reduce to requirements for the continuity
and differentiability of the function V on the sphere.

Actually, since the surface I is closed, we cannot speak of the values
of V at some ¢ and X singled out as boundary values; we should only apply the
conditions of continuity and differentiability of the solution at the ends of
the interval

0<a<2m, O0<9<m,

i.e. we should require fulfillment of the conditions

VOr = 0) = VOr = 27) (QY.) - (a_‘f)
A=l A=2T7

or ar (I.S)
and 1
@-0
g ' (I.4)

Relationship (I.3) sets the condition of periodicity for function V, while
(I.4) sets the condition of boundedness.

In seeking the solution for equation (I.2), we assume that

V(" (p,l) = R(Y)Y(Qp,)\.). (I.S)

After substituting (I.5) in (I.2), the variables separate and (I.2) may
be written as two equal relationships, one of which depends .only on r, and
the other only on ¢ and A. Therefore, they may be set equal to some constant

IThe Laplace operator is invariant to orthogonal transformations of the
coordinate system. Therefore, the singularity of equation (I.2) at the points
¢ =0, ¢ = 7 is due only to selection of the given coordinate system.
Inequality (I.4) requires the function V to behave at the poles as it does on
the rest of the sphere.
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19 (o ¢Q¥_)+_l_<fl’
2Ry r?R’ __sin@ 9\ 99/ singan?
g R = Y L]
Hence we get for determining R(r) (the equation of Euler) /239

2 rr ’- -
“R +2rR xR=0 (1.6)

and for determining Y(¢,A) the equation in partial derivatives of elliptical
type

2
1 il&h¢§%)+~1>—i—¥+xY==0.

sin @ d¢ sin2<p o2 (1.7)
The general solution of the first equation is written in the form
“l a’z
R(ry =Cjr "+C,r 7, (1.8)

where C1 and C2 are arbitrary constants, while 5 and o, will subsequently be

determined as the roots of the quadratic equation

a(a+l) — x =0, (1.9)

We shall now seek the values of parameter k for which equation.(I.7) has
solutions which are not identically equal to zero and which satisfy boundary
conditions (I.3) and (I.4). These solutions are called eigenfunctions or
fundamental functions, while the corresponding values of k are called the
eignevalues of the given differential equation.

Let us again use the method of separating variables, representing Y

(¢,1) as

Y(o,2) = a(9)a(n). (1.10)

We may then write
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o 9 sineg @ ) 4+xd
_ A)\,x _ sing do ( ? )
O — = X
sm (ptI)

where x is a parameter

As a result of separation, we get the two equations

Ay, £ XA =0 (1.11)

and

1 (sing @ )+( X2 )@:0.

sin ¢ dcp sin? ¢ (1.12)

The general periodic solution (satisfying conditions (I.3)) of equation
(I.11), written in the form

A(X)-cmamm1+dmsmmk,
(1.13)

may be found only when x = m2. The subscript m associated with the constants /240
c and dm shows that they depend on the value of this parameter.

Since x may take on any values x > 0, let us assume x = 0 and go in

equation (I.2) from sin ¢ to cos ¢ , and then to the new argument x = cos ¢.

We then get (without changing the former notation for the unknown func-
tion &) the Legendre equation

d 2 ds
EEE g ]“““0' (I.14)

With a transition to the argument x, the region of variation in ¢
0 < ¢ < m corresponds to the interval -1 < x < 1, and boundary conditions (I.4)

are equivalent to setting the unknown function equal to zero at the ends of
this range.

Since the solution of equation (I.14) at x # 0 is not expressed in
elementary functions, we shall seek ¢ in the form of a polynomial of degree n:
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e, (x) =x"+ a2 1 a,x" 2 .. 4a, .
Substituting @n(x) in (1.14), we get

4 [—-nx"“—a,(n—l)x"-» ] +nEc" ra 7l ] =0
dx

or

-1 . n n—~1
—n(nalx” —a (-1 T sl ek %8 X T+ eee =00

(I.15)

If @n(x) is a solution, then equation (I.15) should be an identity. This is
possible only in the case where the coefficients associated with each power of
x in (I.15) are equal to zero.

Specifically, in this case -n(n-1) + k = 0. Hence, it follows that
x=h(n+1), (I.16)

For these values of « (here n = 0, 1, 2,..) we get an infinite sequence of
polynomials @n(x) which are nontrivial solutions of equation (I.14). It is

shown in the theory of differential equations [85-87] that Legendre poly-
nomials Pn(x) are such polynomials of degree n which satisfy the boundary

conditions given above. They may be determined from the relationship
(Rodrigues' formula) !

P(x n_l_gj_ 2—.1".
w (%) Pl dxn(x ) (1.17)

Thus, the values of « given in (I.16) are the eigenvalues of the problem
under consideration for the Laplace equation (I.2) with given boundary con-
ditions, and the Legendre polynomials are the eigenfunctions (for the special

case x =0). o L
s _ . oo —

Expressions for Legendre polynomials are given in Appendix II,
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These polynomials are known to have a number of unusual properties [31,
44, 45, 1, 2] to which we shall refer in the following discussion where neces-
sary.

Assuming now that x # 0 in equation (I.12),we find that in this case
(for eigenvalues (I1.16)) the eigenfunctions of the problem are

2 m
2 d

P, () = (1-x%)" 2
dx

Fal2). (1.171)

The validity of this is confirmed by direct substitution of (I.17) in (I.12).
Polynomials an(x) are called associated Legendre functions.

It also follows from (I.17') that m <n (Pn is a polynomial of degree n).

Let us make the inverse transition to the variable ¢, and we shall rep-
resent the Legendre polynomials from now on in the form an(cos ¢) .

_Returning to relationship (I.10), we note that for any fixed eigenvalue
w (i.e. for any fixed value of the number n), we may write Ynm = (cnm Cos mA +
+ dnm sin mA)P (cos ¢ ). The parameter m in this case may assume the value
nm

of any integer in the interval 0 < m < n.

The functions cos mkan(cos $) and sin mAan(cos $) (for various m) are

called basic or fundamental spherical functions of order n.

Expression (I.17) shows the particular part played by the basic Legendre
polynomials with respect to the associated functions.

The number of fundamental functions (for given n and all values of m) is

equal to 2n + 1, and they form a complete orthonormal system [86, 87]. There-
fore, any eignefunction Yn(¢,k) of equation (I.7) may be represented in the

form of a linear combination of all functions Ynm(¢,k) which go to make up

this system.

That is, /242
» n n .
Y, . (¢,%) -mEO Ynm(cp,h)-mio(cnmoosmm-dnm'smmx)an(cos @)
The function Yn(¢,A) in turn forms a complete orthonormal system. This

gives us the opportunity to apply the expansion theorem of [86], according to
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which any continuous function which satisfies the boundary conditions of a
given problem and has piecewise-continuous first and second derivatives may
be expanded in a series in eigenfunctions.

Before writing this expansion. let us return to the solution of equation
(I.6). According to (I.9), when ¢k = n (n - 1) we get two roots: a; =n and
o, = -(n +1), which correspond to two special solutions: Cl = " and C2 =
= r~(n+l). The first of these is not bounded as r - «, and therefore cannot
be used (it corresponds to the internal Dirichlet problem). If the constant

C2 is determined in the second solution according to the condition on the

sphere

V(Y, (Pp)‘-)lz ":l“'/ro »

then for function R(r) we get the expression
ro\®.
[ 0
R(r) = 7(7) .
Thus, the final series expansion of the potential V(r,¢,A) is written as

n
@ oo n I‘O .
V(ir,p,2) == 2 2 (T) (cppmcosttrtd, . sintin) P, (cos @) .

n=0m=0

This series may also be obtained by other methods. The most widely used
is expansion of the integrand 1/r in powers of a small quantity. The ratio of
the size of the gravitating body to the distance between this body and the
point being attracted is such a small quantity. The coefficients of the ex-
pansion obtained in this way are Legendre polynomials. This method is used
later (in Appendix III) in solving another problem.

!'1. Spherical Functions /243

The principal spherical functions (Legendre's polynomials) are computed
by Rodrigues' formula

P a‘-—-—l ‘éi- 2—1u.
i e
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The associated spherical functions are computed by the formula

m

z
P (%) =(1-12%) ﬁ;

B()-=E) 6 ¢

m
a-?’ d"mEtoy

znn! dxn+m

Some recurrence formulas which relate the spherical functions:

(n+ )P x)~ 28+ xP, (1) +n P,_((x)=0;

dx

AP am - CreP@+ L P, )

@n+1)xF, , (x)~(r-m+ )P, (&) —(B+m) P, _, (1) = 0.,

The spherical functions from Poo(x) to Pgo(x) have the following form:

Poo = 1;
Pro=x;
Pyo=£(322-1);
P21-3x\/I:2_;
P,,~3(1-x2%);

Py, = £(5153 ~3x);

2y2.
P, = 105(1-x°)*%;

Py = & (632°~70x%+153);

P31 - %(5;2 L ])‘/1_22 N
P32= 151(1—12);

%
Py, = 15(1-2%)";
Py~ 23524 ~30x2 + 3);
P,y = 2(7x% -35) V1-x%;

P

s2= (722 =D(1-0)%;

%
Pyy=105x(1 - x2)*;

1 6 4 2_r).
Pso" 1—-6-(231x -315x%*+165x“-5H);

P~ %‘}(33::5 ~30x3.4+5x)/1-x2;

Py, ~ 13 21x% 14524 1)/1-22; Py, = 15243324 ~182%1)(1-x%);

105 [q.3 23y,
| —2--(31: ~x)(i-x%);

3
P~ .‘°‘.]2~_5(11x3- 3x)(1-22) % ;
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3,
P, =10 (9:2-1’)(1-::2)/’; P, - 9‘;—5 (11x2-1)(1-x2)2;

53% "2
§
2y2 P 10395x(1-x2)/'~
P, = 945x(1~x7)"; g :
5
P, - 945(1-22)%; P, = 10395(1-x2)3;

1 7 5 3 _ .
Pyo = = (42017 — 693x° + 3158° - 35x);

P,y = oL (42056 — 49534 + 13527 - 5)V1 - x2;
P, , = % (14315 - 1102® + 15x)(1 — x%);

P,y = 313 (14314 — 6652+ 31)(1 - x* VA
P~ 3—‘%&(13:3 ~ 35)(1 — x2)%;

P, - u39—5(13::2 ~ 1)1 —x2)%;

2,3,
P, = 135135x(1-2%)3;
%

P,, = 135135(1 — x%)";
P, - -1 (6435x® ~ 1201225 + 6930x% — 126022 + 35);

80 128
P, - %(715:7 — 1001x5 + 38523 — 35x)y/1 — x2;
Py, ~ %(143:;5 — 143x% + 33x2 - (1 - x2 )

3
3465 5 _ 9cyd Y2 h
Pgy = 19395 (554 - 2652 + 1)1 — x2)%5 /245
13
135135 /r.3 2,4

135135 (1ry2 2,3
Pgg = 138185 (15x2 — 1)(1 - x2)%;

2. %
g7 = 2027025x(1 — 12) *;
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= 2027025(1 — x2)4;

Psa
1 9 7 5 3 .
Pbo = I§§(12155x — 25740x¢ +18018x> — 4620x° +315x);

1 10 8 6
P100 = -2?6—(4618” — 109395x° + 90090x° -

— 30030x% +3465x2 — 63).

Extensive tables of the associated Legendre's functions are given in [88].

If the potential function is written in spherical coordinates, then the
argument x = cos ¥ , where # is the angle between the radius vector of the
point and the axis of rotation of the Earth, or x = sin ¢, where ¢ is the
angle between the radius vector of the point and the plane of the equator.

If the potential function is written in the geocentric inertial rec-
tangular coordinate system (the z-axis directed along the axis of rotation of
the Earth toward the north, the x- and y-axXes 1lying in the plane of the
equator, x being directed toward the point of the vernal equinox, and y comp-
leting the right-handed coordinate system), then

, where r=\/xz+y2+22°

The functions sin mA and cos mA which figure in the potential expansion are
found in this case from the equations

X =

.‘lN

il

rcos ¢ cos(A+S);

i

rcos ¢ sin(A+5);

N
W

Tsing .

Here ¢ and A are respectively the latitude (reckoned from the plane of the
equator) and the longitude (reckoned from Greenwich), while s is local sid-
ereal time.
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111. EXPRESSING THE COEFFICIENTS IN THE EXPANSION OF THE EARTH'S /246
GRAVITATIONAL POTENTIAL IN TERMS OF MOMENTS OF INERTIA

Shown in Appendix I was conversion of integral (2.4) to infinite series
(2.6). In order to express the first coefficients of this expansion in terms
of moments of inertia, we return again to expression (2.4), writing it in the

form

dm
V‘fST' (2.4")
M

here (see Fig. 117) A is the distance between the instantaneous point with
element of mass dm and an external material point of unit mass

A-\/r2+7f ~2rr cos y;

Fig. 117

r is the distance of the external point from the coordinate origin; T, is the
instantaneous distance of the element of mass dm from the coordinate origin;

vy is the angle ;¥l which may be determined from the scalar product
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1 x:;1+yy1+zzl

rrl

1l (111.1)

I

or in spherical coordinates (r,¢,A)

c037=c03cpcoS(pl+sin<psincplcos(7~-?\1). (IIT.17)

Since T, <1, the function

1.

>

= —— - L F(s)
rJ1+062-26 r
+8°~26cos Y (II1.2)

may be expanded in a Taylor series with respect to powers of the small quantity /247
§ = rl/r (the steady convergence of this series is proved, for instance, in

[31, 44, 45].

As a result, we get

[ Lol

n
=%— 05 (I—I—> Pn(cosy).
n=0 \T (II1.2'")
The coefficients in this expression are Legendre polynomials! [31, 44, 45].
Substituting (III.2') in (2.4'), we get

Vi, o,0)=f & -2 Snp( )d M3 (LY
39, - ngorﬂ_—-i-l— rl n CoS Y)dm = ‘F'HEG "r—‘ Yn- (III.3)
M

The function V, as always, depends on the coordinates (in the given case,

having in mind (III.1'), the spherical coordinates r, ¢, A) of the point on
which it acts.

! The function F(8) is therefore called a genérating ftunction of the Legendre
polynomials.
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It has already been pointed out in Appendix I that the spherical func-
tions remain spherical after rotation of the coordinate axes (due to invari-
ance of the Laplace equation with respect to orthogonal transformations).

By utilizing this fact, we may express any principal function in terms
of the sum of the full set (for given n) of associated functions.

Actually, let the spherical coordinates of two points which are the ends
of two vectors ¥ and r be equal respectively, to (r,¢,A) and (rl, ¢1, A )

If the reference axis for angles ¢ (axis oz) is turned through the angle vy in
such a way as to bring it into coincidence with the vector ¥, then the basic
spherical function Pn(cos y) may be represented in the form

n
2
Buleasy)= 5 2 CRP (008 9B, p(cos vy Jaos(amn ), (I11.4)

m=0 T .

where 6m = 2 when m = 0, and 5m = 1 when m # 0. This expression is called a

summation formula.

With regard to the summation formula, integral (III.3) is changed to

V(r,cp,?\)=£—n§0”§n r—n (c wmCoSMA+d, . sinmA)P, (cos o), (III.5)
where
“m = 1M :(&7:)11 }, rne08 9 om TR 1 01 (I11.6)
Gom = = " 82(3(1“2))1‘ §, r) P (cos @ ) ) sinmny dum.

The integrals

n ’ n N
Com =),{ r b (cos ¢y Jeosma dm and d,,m=fr) E, (cos ¢y)sinmr dm
M

are proportional (with an accuracy to constant multiples) to the expression

Y - [ x* B Ya
xByY 4{ yzoam, (I11.7)
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where X, y, z are associated with the spherical coordinates of relationships
(I.1'), while o, B, y are whole numbers, a + B + y being equal to n [32].

The quantities Y g, are the moments of mass of the Earth; however, they

By
have a graphic physical meaning only when n < 2 (the coordinates of the center
of inertia and the moments of inertia).

Let us now express S\m and dnm in terms of the moments of inertia of the-

Earth. It is sufficient for this purpose to consider the various terms of
expression (III.3), taking account of formula (III.4). In this regard,

(IIT.3) will be integrated with respect to the elements of mass M with instant-
aneous coordinates Ty, ¢1, Al. The order of the functiom an(cos Yy ) =P

(¢, A) does not change after integration, and the coefficients associated
with the elementary spherical functions will be the coefficients c o and d__
in which we are interested. n

nm

When n = 0, since Po(cos Yy ) = 1 (see Appendix I1),

I, =7 roP (cosy)dm= M.
07 T oY (I11.8)

Consequently, the coefficient associated with the spherical harmonic of order
zero will equal the mass of the Earth.

When n = 1, we have Pl(cos ¥) = cos y (see Appendix II). Therefore, if /249

we convert to rectangular coordinates for simplicity, then with regard to
(I11.1), we get

I, =7r1,P(cosy)dmi=fr cosydmm=.
M M
-.17 S(xx +yy, +22; )dm=1r-[xfxldm+y [y dmiz [z, dm:] . (I11.9)
M N M M

The integrals

MX = [x,dm; MY_= dm; MZ_ = [z.dm
¢ »{1 A AL (I11.10)

determine the position of the center of inertia for the mass of the Earth
(XC, YC, Zc) in the selected coordinate system.

If we use formulas (I.1') to convert to spherical cooxdinates in (III.S8),
we get (taking account of the form of the spherical functions according to
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Appendix II)

Yl =".£ r Pl (COSY)dm"M[chIO +XCPIICOS'A'+YC Pllsin Al (I11.11)

The third term in expansion (III.3) contains the integral
2 2
Y, - Jr Fy(cosy)dm= [1] (g-coszy-%\) dmz;lz- f[g—(xxl+yyl+zzl)2—
M M M
..-r r? {dm = —-f[ (x%x yzyf+zzzf)+3(xyx1y1+xlezl+
L2022y p 22 2 1 (X% 0,2 42 _,2
+y2y,21) 5" +y " +2 )(x1+y1+zlildm-r2 5{[2 (21c1 A 7'1)*'

2 2
+ 22“ (2Yf —I"’l-zi )+%(2212—X f-—)’ §)+3)’Z)’1 z 1+3121 12 1+3xyx lyl:] dm.

If the moments of inertia with respect to the principal axes are desig-
nated by

A-f(yf+zf)dm; B-j(xf+zf)dm; ,C-f(xf»,yf)dm,
M M M (I111.12)

while the centrifugal moments of inertia are given by

D~syzém; E=[xz,dn; Fa=[xydn, (II1.12%)
then the expression for Y2 is written

[—Iz y2 2 2
Y, = —5[_—2— (B+C-2A)+--2— (A+C—2B)+-—§(A+B-2C)+ 3Dyz+3Exz+
1
+3ny] -3 [(A+B—2C) <zz_§.x2—§-y2) +3(B-AXx2-y2)+

+ 3Dyz+3Exz +3ny] o
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Converting again to spherical coordinates by formulas (I.1'), we get

Y, = ;lf[(A+B‘-2CX"2C052<P —%fzsiﬂqu)+(B-—A)rzcosch(coszx—sinzx)-t-

+3Dr? sing cos ¢ sina+3Er? sin ¢ cos ¢ cosh +3Fr? sin?¢ sinAcos A ],

Finally, we have

Y2 =‘{ rsz(cos Y)dm =(A+B—2C) on (COS CP)‘*"EPz 1(005 (p)COSX+

+DF,) (cos ¢)sinr+(B~A) P, (cos p)cos 2n+ FFE,, (cos ¢)sin 22 . (I11.13)

Thus, the first coefficients of expansion (2.6) with regard to expression
(I11.8), (III.11), (II1.13) are written in the form

Z X Y
C = 1 C = —< . c —C. d _ (4
00 ’ 10 ’ 11 ™ ’ = ==,
ro ro 11 o
A+B-2C E D B-A F
c Coq=——=-; d Copp me il =
20 2  *21 2! 21 2’ V22 27 722 9 °
2Mr0 Mro M s 4Mr0 2Mr0

IV. PARAMETERS OF THE GRAVITATIONAL FIELD OF THE EARTH

1. The values of the coefficients in the expansion for the gravitational
potential of the Earth according to I. D. Zhongolovskiy [32] are as follows:

€o0 =—108808.10-8; d32 ==50+:10-8; 4= 0-1078;
Cag = 574:1078; (g5 = 42:1078; dyo = 8-1075;
dgy = -158-107%  d,, = 34-1075; C43= 5-1075;
€30 = 442-1078 ¢, =358-10-8, dyq =—1-10-8;
C3y = 189.10-9; C41 ="67’10_8,’ C4q = 1‘10“8,
5 = -96-10-8  d,, =-40-10"%; dyy = 2:10-8;

To= 8883 853x; u=fM = 398 590°10° %38 sec2,
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2. The values of the constants accepted at the International Astro-

nomical Union in 1964 (Hamburg) are:

3. The values of the normalized coefficients in the expansion for the
gravitational potential determined from satellite data by non-Soviet research
Izhik and Kaula from analysis of optically observed satellites,
from analysis of radio measurements of Doppler velocities are listed

workers
Guire
in Table 39.

4. The values of the coefficients associated with the zonal harmonics in
the expansion for the gravitational potential

ro=6378160m; u=fM=398603-10°m 3 sec?; «=1:298,25.

TABLE 39 =
-
Normalized (zhik Kaula
Coefficient 1964 1963

Tpt 10° - -484,08
€ - 10° 1,17 1,880,281
d,, -10° -0,85 -1,3810,17
s+ 10° - 0,87+0,01
s *10° 0,8t 1,52+0,03
ds. *10° ~0,25 0,14:0,18
szt 10° 0,24 -0,020,28
ds " 10 -0,25 0,420,086
T, " 10° -0,50 0,70%0,28
d,, -10 0,93 0,78%0,29
z., -10° - 0,87+0,02
C.,-10° -0,18 -0,33+0,01
d,,-1n° -0,25 0,3740,15
T.oe10° ~0,11 0,01£0,02
d, -10° 0,23 0,35:0,015
C,, 10° 0,28 0,17+0,02
d,, -10° -0,08 0,41:0,03
¢, 10 -0,08 -0,01£0,08
g 100 0,29 0,18:0,05

mined by non-Soviet researchers [95, 96]

T Mean square error,
%Tr. Note: Commas indicate decimal points.
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n

= =y

e
2n+1 CnO )

—— - e e — =

Guire

1964

-

b
®'88 !

- -
-
[ee]

-

»-A:-l.‘éooH
58 ' 288%R

[
o0

0,27
1,19
1,38
-0,058
~-0,37
0,31

(Jeffreys coefficients) deter-
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e

where C
n

*Tr.

0

Note:

is the normalized coefficient, are given in Table 40.

TABLE 40

Coefficients King=Hele, Cook Kozai

1964 1964
%z . il(]: - 10_.842-.470 o 1082,85
l, : 18‘ - -2,53
14 Toe ~1,40 -1,62
Is- 10¢ 0,37 Toan
210 , 0,61
i7 10 -0,32
L, - 107 0,07 -0,24
. - -0,10
I, 10° -0,50 ~0,10
I,.-10° - 0,28
}u' }3: 0,31 -0,28
.t - -0,18
I.,-10° 0,18

Commas indicate decimal points.
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Appendices to Chapter Two

V. DERIVATION OF EQUATIONS IN OSCULATING ELEMENTS
WITH RESPECT TO COMPONENTS g AND k OF THE LAPLACE VECTOR

The differential equations of disturbed motion with respect to components
q and k of the Laplace vector may be derived in various ways. We shall find
them according to the general method used in celestial mechanics directly
from the expressions which relate the kinematic characteristics of Keplerian
motion to its first integrals without. resorting at all to the concepts of
orbital eccentricity e and angular distance of the perigee w!. In this con-
nection, we shall use the basic rule [1, 2] according to which equations in
osculating elements are derived by differentiation of the first integrals of
undisturbed motion with respect to time. In this type of differentiation,
time t and the coordinates are treated as constants, and the derivatives of
the velocity components are replaced by the components of the disturbing
acceleration.

Thus equations (6.3) are the initial relationships in the following
derivation.

In order to derive the equation with respect to dq/dt, we shall express
the functions sin u and cos u in the first of the relationships in (6.3) in
terms of the inertial rectangular coordinates x, y, z by means of (6.8').
This must be done since the argument of latitude in the case of differentia-

tion with respect to time is a disturbed function and cannot be taken as
constant (according to the rule cited above) like the oxrdinary coordinates.

After eliminating sin u and cos u, we get

P i1 p y .
q-\/;Vr %sini +(\/;V,c—1>(§-cosn+7sm 52) .

Differentiating this equality with respect to time, according to the
given rule, we get

1 As is known [1, 2, 48], e and w are expressea in. terms ofWéomponents fl

and f, of the Laplace vector in the absolute geocentric rectangular coordinate
system. In this case

esiJFi+fZ=ﬁz+k2; tgw:%—.

: 1
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dqg_ zldP Pz _
BT

dt 2vup 7T sini dt”

v T)(;mg+§smg)(

By reverse substitution, we eliminate coordinates x, y, 2, and after
reducing similar terms, we get

S Py zcosi di
B rrsmldt

X o.) a0
V.c—1> (——r-smm-? oosQ) at

+

m

<;.]

dg 1 ) di
T 2p(q cosu)——-+<§-ksm2u gsin?u)ctgi T
( q sin 21 +k sin? u) HB +§ sinu + T cosu.

The functions S and T here are the same as in (6.4').

We may eliminate the derivatives dp/dt, di/dt and d@/ dt from this equa-
tion by using the equations of (6.4).

The equation with respect to dk/dt is derived in the same manner. The
second relationship in (6.3) serves as the initial expression in this case.

V. DISTURBANCES OF THE ORBIT OF A CIRCULAR SATELLITE
IN THE FIELD OF THE SPHEROIDAL EARTH

A circular satellite is defined as one whose velocity vector at the
initial instant corresponds to circular Keplerian motion.

Some analysis of the disturbed orbits of circular satellites carried out
on the basis of numerical calculations is given in §8. In the given appendix,
this problem is studied in more detail with the aid of the approximate analyt-
ical solutions derived in §11. These solutions describe disturbances of
Keplerian orbital elements in the field of the terrestrial spheroid (the
concept of a spheroid is defined in §6) with an accuracy of second-order polar
oblateness of the Earth.

In order to study the perturbations of the elements of a circular satel-

lite, we should set 9y = kO = 0 in the solutions found in §11. The resultant

relationships show that disturbance of the plane and of the focal parameter
of the orbits of circular satellites is in no way different in principle from
the disturbances of these same elements for satellites with an elliptical
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orbit. It is therefore most interesting to examine the changes in shape and /255
position of an osculating orbit which are described by the relationships q(u)
and k(u). When dq = k0 = 0, these functions contain periodic (short-period)

and quasisecular parts. The quasisecular part is linearly dependent on the
argument of latitude u, changes extremely slowly (in proportion to ¢2) and

is introduced into equations (11.9) from the second approximation (qu and

sz). We shall limit ourselves initially to studying equations of the first
approximation. In this case, q and k are periodic functions and are represent-

ed by the equations:

q= e(cosu-co-suo)[al ~a, (cos®u +coslicos u, +cos? uy)l;

k = & (sinu—sinug)(b, + b (sinu +sinw sink,, +sinZu, )]. (VI.1)
1 oy . 1.
a1=§-(35m 10*—1), b].:—f’
7 o 2;
a2=b2=gsm ige (VI.2)

In the paragraphs which follow, we shall investigate the effect which the
quasilinear term--the most significant component of the second-approximation
functions F_, and sz -- has on the qualitative picture described by equations

q2
(VI.1).
Each of the functions ( VI.1) has six complex or real zeros in the inter-

val 0 < u < 2w, and the arrangement of these zeros determines the properties
of the osculating orbit. Let us examine this problem in more detail,

One group of zeros depends only on the value of Uy» since it is found
from the conditions

mu=m%;}

cosU = cosky. (VI.3)

A second group depends on the two parameters i0 and Uy» and comprises

the zeros of the trinomials enclosed in brackets in (VI.1).

Functions (VI.1) are a two-parameter family which depends on the initial

values of 10 and uO.
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Let us set u, = 0 (unless otherwise stated, this is assumed everywhere

in the following discussion) and find the zeros of the expressions

=4, ~a2(0052u +cosd+1);

bl B - VY

(VI.1")

i
<o

+b2 sinu.

Setting c~{ equal to zero, we shall solve the resultant equation with
respect to cos u.

We get
D RY LS
Cos U Tty 4‘;?_3.
(VI.3")
Since cos u should assume only real values, the condition
a
i S 0,
a, =
should be fulfilled, and hence we get (with regard to (VI.2))
sin?iy > 4/5
or
ig 21, = arcsin 0,892 = 63°10”.
Consequently, the function q can have zeros only when i0 > i0 . If
!
iO = iO , we get for cos u from (VI.3') only the single value cos u = -1/2,
1
i.e. at this inclination the function § has multiple zeros. In the case
iO > iol, the function g(u) (considered with respect to argument u) has four
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different zeros. For these zeros when iO = 1/2, we get the following values

of the argument

Uy, = 180° 180052’;}

o o ’
u3p4 - 180 133 55 . (VI.SH)

As i decreases in the range [90°, 63°,10'], zeros u.,, u, and u,, u

1273 2° 74

converge by pairs.

Investigating the second function in (VI.1'), we find that the natural

requirement sin‘u < 1 is fulfilled (with regard to the second expression in
(VI.1') and (VI.2)) only at

fo 2y = arcsin0,658 = 41°08".

Consequently, the function i(u) has zeros only when iO z_io
2

Setting this function equal to zero, we get the equality

sin? u = 3/(7 sinzio).

from which it follows that when iO = /2, the function k(u) has four different

zeros at the points

By o= 90°:41°087;
(VI.3"")

Hagg=270° £41°08" .

As iO is reduced in the range [90°, 41°08'], zeros Ug, Ug and u,, Ug converge, /257

merging at the end of the interval (where iO = ioz). At this point, the

function K(u) has two multiple zeros. Let us find out whether equations
(VI.1') have common zeros. For this purpose, we solve them simultaneously

and find that when ig = io = arcsin ¥ 7/8 = 70°Q3',the zeros of functions
k

d(u) and k(u) coincide. This takes place at values of the argument u = 180° *
+ 44°24'50".
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Thus, the arrangement of the real zeros of functions (VI.1)} for uy = 0
and various inclinations of the orbit 0 < io < 7 are illustrated by the graph

in Fig. 118. Three characteristic inclinations may be pointed out (since the
zerus are located in plane (io, u) sym-

- - v metric to the line i0 = /2, we shall

L consider only the first quadrant 0 <iO <

< w/2).

(]

In the first of them (iO = arcsin
k

v/ 7/8 = 70°03'), both equations in (VI.1)
have common zeros. This point (io, u)

%°

may be called the critical point in view
of certain properties which will be
clear from the following discussion.
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At the second characteristic incli-
nation (io = arcsin 0.892 = 63°10'),
1
multiple zeros appear in the first equa-

tion of (VI.1), and at the third characteristic inclination (iO = arcsin
3

Fig. 118

0.658 = 41°08'), multiple zeros appear in the second equation.

Treating the argument of latitude u in equation (VI.1) as a parameter,
we get a curve in plane (q, k) which is the hodograph of the normalized
Laplace vector'. Let us call this hodograph, which corresponds to the value
Ug = 0, the zero hodograph. The zero hodographs for the three charactertistic

inclinations, as well as for the values i_. = 90°, i, = 30° and i. = 5° are

0 0 0

shown in Figs. 119-122; the scale for argument u is given on the curve.
According to the construction, the modulus of the radius vector for any point
on the hodograph is equal to the eccentricity at the given value of argument
u, and the angle between the radius vector and axis q is equal to the angular
distance of the perigee w.

As these curves show, the zero hodograph is always symmetric with respect
to the g-axis and passes through the coordinate origin. When iO = /2, the

hodograph is an extremely complex curve with several nodes located in all
quadrants of plane (q, k) and looping the coordinate origin several times.

1 That is, the Laplace vector divided by the constant p = fM. /257
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As the inclination is reduced, the zero hodograph is shifted entirely into the
left half-plane and '"straightens out'", tending to the limit of a circle as /259

io - 0.
s o
a0 SiYy
0 e /258
G Tyt
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hn't, =f Q0005
%0° 40° Up=0

180" I - T goow
-00006 - 06002 4
270
-00002
~0000%
220° 3#0°
-Q0006
N .
Fig. 121 Fig. 122

Analyzing the arrangement of the zeros for the functions

q(iOJ u)i }

kiiy,w, (VI.4)

we find characteristic differences in the osculating orbits of circular satel-
lites of the spheroidal Earth.
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Let us first determine the form of the osculating orbit.

The instantaneous value of eccentricity is given by the equation

e = \/qé+k2.

The equality e = 0 corresponds to coincidence of the zeros of functions (VI.4),
i.e. to the common points of the curves shown in Fig. 118.

According to (VI.3), one group of common zeros takes place at u = 2nn

(n=0,1, 2...) and at any inclinations iOl . Another group (when 2ny < u <

< 2 (n+1) w) is found as a result of examining the system of equations

az(io)[cos2u-+cosu-+1]a al(io);
bz(io)sinzu =1/2,

which is obtained from the expressions in (VI.1)} enclosed in brackets.

The real solutions are

U* = (2n+ 1)m+44°17,5;
U = 2n+ 1) -44°1",5, n=0,1,2, ..,

. T [} 4
zok =3 + 19757 .

which define critical inclination iD and the values of the argument of lati-

tude u at which the eccentricity within the period vanishes.

Hence, it follows that the osculating orbit of a circular satellite of
the spheroidal Earth is an ellipse with eccentricity which vanishes at the
points u = 2nmt (n = 0, 1, 2) for any initial orbitral inclinations. 1In
addition, when the inclination is equal to the critical value (io = /2 *

k
19°57'), the eccentricity also vanishes at the points u = (2n + 1) 7 #

I+

+ 44°24'50",

This property of the orbit of a circular satellite is illustrated by /260
! Generally speaking, according to (VI.3) common zeros are realized at any /259
initial conditions 155 Y, and values of the argument u = uy * 2nm.
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Figures 119 - 122, where vanishing of the eccentricity corresponds to passage
of the hodograph through the coordinate origin.

Let us eXamine the behavior of eccentricity in the neighborhood of
points where ¢ = 0. For this purpose, we expand sin u and cos u in equations
(VI.1) in a Taylor series in the neighborhood of the point u = Uy Limiting

ourselves to terms of the first negative order of magnitude with respect to
Au = u - uo, we get

q = (= ousinuyXa 1 -85 c:oszu0 );

k= eaucosuy(b, +b, sinzuo). (VI.5)

Hence, taking into consideration the values of the coefficients in
(vi.2), we have when u, = 0

0
€ = 0,5 A N
and when u, = u* = 7 + 44°1.5' or when u, = u** = ¢ - 44°1.5°"
2= 1,38]c||aull (V1.7)

On the basis of (VI.6) and (VI.7), we conclude that in the neighborhood
of points u = 2nm as well as u = u* and u = u** (at the critical inclination),
the eccentricity of the osculating orbit of a circular satellite is an in-
finitesimal of the same order as the increment in the argument of latitude.

Keeping this situation in mind, let us go on to determining the position
of the osculating orbit. Let us first examine the change in the angular
distance of the perigee in the neighborhood of those points where eccentricity

vanishes.

Since the hodograph of the Laplace vector is a smooth curve, there should
be a discontinuity in the function w(u) when this curve intersects the
coordinate origin. If it is assumed that Au < 0, ,then on the basis of (VI.5)

we may write in the left-hand neighborhood of the point u = U,

g~ enusindy(@, ~ a,cos?uy); } (VI.8)

k= &aucosuy(~b,—b,sin?u,).
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If we now assume u, = 2nm in (VI.5) and (VI.8) and divide the left-hand

and right-hand members of these equalities by (VI.6), then taking ¢ as
negative we get when u = 2ng: from the right--cos w = 0, sin w =1, i.e.
w = 7/2, and from the left-- cos w =0, sin w = -1, i.e. w = 31/2.

If we now assume uy = u* or u, = u** (VI.5) and (VI.8) and we divide

these equalities by (VI.7), we may perform a similar analysis for the critical
points u* and u*¥*.

In this way we find that the angular distance of the perigee w in the
neighborhood of the points u = 2nw, u*, u** has a discontinuity of the first
kind equal to wm. At the points u = 2nw, w = n/2 from the right and 3%/2 from
the left, at the points u = u*, w = m from the right and zero from the left;
at points u = u**, v = 0 from the right and 7 from the left.

Hence, it follows in particular, that the perigee comes at the point
w = 7/2 at a moment infinitesimally close to the initial time (u = +0)!l.

From the hodographs (see Fig. 119 - 122) it is obvious that the perigee
is moving in the forward direction at the initial instant. In order to give
an analytical demonstration of this, we write the expansions of sin u and
cos u, retaining terms to (Au)2 inclusive. Let us substitute them in (VI.1)

and divide both members of the equations by (VI.6). If we then assume ug = o,
then in the neighborhood of this point we get
sinw = +1; } (
VI.9)
cosw = Au(a, ~3a,). |
On the interval 0 < iO < m/2, the condition
a,—-3a, <0. (VI.10)

is satisfied. This follows from the obvious inequalities

024 7 in2 i . 4 . 9 1
(3sm iy —1) — 5sin 13<0; — 3 sin 10—§<0.

) Lo

I Here and in the following discussion the signs + and - will be used to

denote the right-hand and left-hand neighborhoods of a point, respectively.
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Therefore, it follows from (VI.9) that at an instant close to the initial
time, sin w > 0, cos w < 0, i.e. the angular distance of the perigee changes
in the second quadrant, and since w = w/2 at the initial instant, the perigee
of the osculating orbit is moving in the forward direction in the right-hand

neighborhood of the point u = Uy = +0, in other words, the angle w is in-

creasing.
Let us now determine the nature of motion of the line of apsides.

This may be done simply by examining the zeros of the functions q(u) and
k(u) in Fig. 118. Let us write these functions in the form

q(u) = e(cosu — 1)q* (u);
e(cosu — 1)q (u).} (VI.11)

k(u) = e sinuk® ().

Then with regard to (VI.3") and ( VI.3"'), function q(u) will have zeros
when i, = /2 at values of the argument Ui = 0°, Uyg = 99°8", gy = 146°5",

0
u4q = 213°55", u5q = 260°52', u6q = 360°, while function k(u) will have zeros
. - 3] - o 1 = a1 = ° =
for the same i, at Upge = 07, Usy 48°52', Uz 131°8', Ugye 180°, uSk /262
= 228°52' and Ugy = 311°8"'.

As may be seen, the zeros of q(u) and k(u) alternate in the interval
0 < u < 360°, which indicates that the line of apsides rotates at inclination

iO = n1/2. As was pointed out above, this rotation takes place in the forward

direction and corresponds in Fig. 119 to the fact that the origin of the
coordinate system (q, k) is located within the loops formed by the hodograph
for the Laplace vector.

The unequal distances between the zeros along the u-axis (see Fig. 118)
indicates nonuniform rotation, while the number of zeros shows that the line
of apsides makes 2.5 revolutions in a single draconic period of revolution of
the satellite. Actually, each of the functions q or k becomes zero twice for
one revolution of the line of apsides. However, although q and k have six
zeros apiece, the line of apsides makes not 3, but 2.5 revolutions since one
of the zeros corresponds to the initial position of the satellite.

As the inclination of the orbit decreases, the zeros of q(u) and k(u)
converge by pairs, i.e. nonuniformity of rotation increases, and finally,
when the zeros merge at the critical inclination, rotation of the line of
apsides is replaced by oscillation. '
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This, then, is the part played by the critical inclination: it divides
the region of rotation of the line of apsides from the region of oscillation,
and also the eccentricity of the osculating orbit vanishes in mid-period at
this inclination.

Past the critical inclination, the zeros no longer alternate (see Fig.

118), and over the entire remaining range of inclinations (0 < iO < iO ) the.
cr

line of apsides oscillates only. After each of the characteristic inclina-
tions (63°10' and 41°8') is passed, the number of real zeros for the function
q(u) and then for k(u) also, decreases by two. In each of these cases, the
oscillations are limited first to 180°, and then to 90° (with respect to the
motion resulting from the fact that the perigee starts at w = /2 at the
beginning of a revolution, and ends at w = 37/2 at the end of a revolution).
A1l of these phenomena are readily apparent in Figs. 119 - 122.

Let us now change the initial conditions, assuming uo # 0. For conven-

ience, we write equation (VI.1) in the form

(VI.12)

q= efl (u:io ) i 9f1(u0:i0 );
ke of, (4, ig ) — ef(ug ,ig )e

At each fixed value of the initial conditions, the functions fl(uo,io) =
= const and fz(uO,iO) = const. Therefore, the condition u0 # 0 results in

parallel displacement of the zero hodograph in plane (q, X) and in a change in
the scale of the graph. The form of the hodograph itself does not change with
a variation in the initial value of the argument of latitude.

If we use the notation

g=q(u,iy,0); k=k(uig,0)

and

q“q(u;io’uo); E,. k(u,io,uo),

then according to (VI.12), displacement of the hodograph in plane (q, k)
with a change in ug is equal to
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A =§—q = efl(uo:io) - efl (0, ig )3
sk =k —k = of, (ug,ig) = of, 0, 15),

j.e. it is described by the zero hodograph in which the argument u is replaced
by u,.
0

Thus, when the initial value of the argument u0 # 0, each point of the

zero hodograph will move in its own plane by the quantities Aq and 2k equal
respectively, to the abscissa and ordinate of the point u = Uy of the zero

hodograph taken at the same value of inclination iO.

Consequently, if we know the zero hodograph, we may construct the hodo-
graph of the normalized Laplace vector for any value of the argument Uy and

we may also find the displacement of the hodograph with a transition from one
value uO # 0 to another. The properties of the osculating orbit are deter-

mined not only by the form of the hodograph, but by the positions of the
poiﬁts where it intersects the coordinace axes (i.e. these properties are
determined by the zeros of functions (VI.1)). Therefore, in view of the non-
linearity of fl and f2, we cannot say beforehand how the orbit will behave at

various values u, # 0. In particular, it has already teen pointed out above

0
that the eccentricity of an osculating orbit always vanishes at the points

= + 2nm.
u uO m

In order to explain the effect of the quasisecular part, let us write
the equations for q and k with regard to this term in the form

q= of (hig )+el2(n=~1)Q; em = f) (g, ¥g N +62Q,u;

: (VI.13)
k= ofy(,ig)+el21-1)K en—f,(ug, i )]+e%K &,

Here, Kl

n is the number of the orbit oun which satellite motion is being considered, /264
and u varies over the range [0, 27w].

and Q1 designate the coefficients associated with quasisecular terms,

As may be seen from (VI.13) the presence of a quasisecular part in the
equations has a double effect.
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In the first place, the effect of the quasisecular term, just as the
effect of the initial argument u, # 0, is to shift the hodograph in the plane,

in the %iven case.by a quantity proportional to the number of preceding revo-
lutions

Thus, accounting for this part of the quasisecular functions results in
a shift of the zero hodograph with respect to axes q and k, this shift being
equal to

ag=2e2 (n-1)Q;m: Ak = 2e*(n-1)K;=.

In the second place, the effect of the quasisecular part shows up in the
form of a linear term with an extremely small coefficient and leads as it were
to continuous deformation of the hodograph, i.e. to a certain change in the
properties of the orbit.

Deformation of the hodograph due to the presence of the quasisecular
component is extremely slight. For instance, on the first three revolutions
in the case of orbits with a radius of 7,400 km, only the seventh decimal
place changes. The effect of quasisecular terms on the zero hodograph de-
creases as the inclination increases.

One of the characteristic singularities of the osculating orbit of a
circular satellite is that its eccentricity may vanish at certain moments of
motion. This singularity is also inherent in the orbits of satellites with a
fairly small initial eccentricity unequal to zero.

A necessary (but not sufficient) condition for disappearance of eccen-
tricity is

1sel 2 60, (VI.14)

where de are perturbations of eccentricity and e is the initial value of

eccentricity.

1 In spite of the form of equations (VI.13), the functions q and k will not
increase without bound as n - «. The Poincaré method may be applied only

over a limited range of variation in the argument. As n - «, the effect of
long-period oscillations in q and k should be felt, and these oscillations are
not reflected in the equations since the corresponding harmonics are approxi-
mated by a quasisecular term over a small range of variation in u.
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Consequently, a satellite may be called nearly circular (or near-circular)
when it has an initial eccentricity which is no greater than the maximum abso-
lute values of perturbations in eccentricity.

If it is remembered that o= /qzi_kg’ a and /265

se =\/q§ +k§ + a(Fq2+ Ff)+29(quq +k0Fk)-.:\/q§ + kg ,

we find that condition (VI.14) is satisfied (i.e. the satellite will be nearly
circular) if the initial values of qoand kolie within the rectangle

~0,778e] < q, < 1,496|e|; }
(VI.15)

~0,487)e| < ky < 0,936]e].

The asymmetry of this rectangle with respect to the axes (§, K) is explained
by the asymmetry of the zero hodograph with respect to these axes (see Fig.
119 - 122).

As may be seen from (VI.15), the quantities and k. for a nearly cir-
Y q qo 0 y

cular satellite have the order of oblateness. Therefore the functions q(u)
and k(u) are written in the form

q(u) - G[fl(u,io)" fl(uo)io) +C1]; ]

k) = elf,W,1y) - folug,ig) +C,1, (VI.16)

where Cl S0 and C2 S 0 are constants approximately equal to unity.

Thus, in the case of a nearly circular satellite, the zero hodograph is
somewhat shifted in its own plane, while the change in the angular distance
of the perigee and eccentricity of an osculating orbit will be determined by
the zeros of functions (VI.16).

Let us examine motion of the line of aspides of nearly circular satel-
lites. Since mo more than two different branches of the curve intersect at
the nodes of a zero hodograph (see Fig. 119- 122), the eccentricity of the
osculating orbit of a nearly circular satellite may become zero no more than
twice (when the origin of the coordinate system (q, k) coincides with the node
of the hodograph). Rotary motion of the line of aspides in these cases
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alternates (during a single revolution of the satellite) with oscillatory
motion. Oscillatory motion may be superimposed on rotational motion in the
case where some branch of the hodograph passes through the coordinate origin
(e.g. in the case where i, = 90° and the point of the zero hodograph cor-

responding to U = 30° coincides with the coordinate origin). However,

pure rotational motion of the line of aspides may be observed. This takes
place when the coordinate origin coincides with the point corresponding to

u = 180° at inclinations 71° < i, < 90° (see Fig. 119), or when the coordi-

nate source is located somewhere within the central loop of the hodograph at
41°08' < i0 < 90°.

Since the functions q and k have no more than six real zeros, by repeat- /266
ing the procedure used above we conclude that in the first case the line of
apsides makes 2.5 revolutions, and in the second case an even 3 revolutions
per revolution of the satellite.

Thus, we may make the following final conclusion: the line of apsides of
a nearly circular satellite may go through purely rotational motions at a rate
of only 2.5 or only 3 revolutions per satellite revolution. In the first

case the initial inclination of the orbit must lie within the range 71° < iO <

< 90°, while the eccentricity of an osculating orbit becomes zero within the

period at u, = 180°.

In the second case, the initial inclination must lie within the range

41°08"' < iO < 90°, while the eccentricity of the osculating orbit is nowhere

equal to zero.

The line of aspides may also go through other types of motion: oscil-
latory and rotational (in the course of a single revolution of the satellite),
rotational motion with superimposed oscillatory motion, and purely oscillatory
motion. In the first case the eccentricity of the osculating orbit vanishes
twice in the course of a single revolution of the satellite, while in the
second case it vanishes once.

In all cases where the eccentricity vanishes, the line of apsides goes
through a jump equal to .

It should be stated that the facts outlined in this appendix are not an
organic singularity of the orbits of satellites with low and zero initial
eccentricities. They arise only as a consequence of the specific method of
describing motion with the aid of osculating parameters: eccentricity and
angular distance of the perigee. And they will always arise when the motion
parameters include a quantity which is in some way related to the position of
the line of aspides.

. Various systems of coordinates or parameters may be selected for describ-
ing the motion of satellites without any singularities throughout the entire
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range of eccentricities. For instance, examples of such systems are the
system of phase variables in the rectangular inertial geocentric coordinate
system or the system of osculating elements in which the angular distance of
the perigee and eccentricity are replaced by two components of the Laplace
vector. However, the motion of circular satellites may be made geometrically
more graphic by studying the changes in angular distance of the perigee and
eccentricity.

VII. EXTREMUM POSITIONS OF THE CIRCULAR ORBITS
OF SATELLITES IN THE FIELD OF THE SPHEROIDAL EARTH

The perturbations due to eccentricity of the Earth's gravitational field
cause only slight changes in the regularities of Keplerian motion. Therefore,
a satellite with initial parameters corresponding to an elliptical orbit will
be at a minimum or maximum disStance from the Earth no more than once during a
revolution, namely at those times when it passes through the point of the
apogee and perigee of the osculating trajectory. In nearly circular satel-
lites (as a consequence of the similarity between the magnitude of the distur-
bances of eccentricity and its initial value), this rule may be broken. A
circular satellite in particular, due to rotation of the line of apsides, will
go through the position of the osculating perigee several times in a single
revolution, and consequently will be at minimum distances from the Earth on
several occasions. Thus, the problem of determining extremum positions for
circular and nearly circular satellites is not trivial.

Let us define this concept more specifically. The extremum positions of
the satellite we shall call those in which a local minimum or maximum is
reached in the focal radius r. In this case, the necessary condition

r' =0 (Vii.1)

is realized. Condition (VII.1) corresponds to the satellite positions during
crossing of the perigee, the apogee of an osculating orbit, and the point
where the osculating eccentricity vanishes. We shall call the apogee the
furthest removed position from the Earth, and the perigee the least removed
distance from the Earth, regardless of the true position of the satellite with
respect to the line of apsides and the magnitude of the osculating eccentri-
city at this moment. In this connection, it should be borne in mind that due
to disturbances of the focal parameter (apart from disturbances of the
eccentricity and the angular distance of the perigee), the passage of the
apogee by a circular satellite in osculating motion does not always correspond
to the apogee position (the same applies to the osculating perigee and the
perigee position). ‘Therefore, a satellite located at the furthest removed
distance (i.e. in the apogee position) will also be at the perigee of the

osculating oxrbit.
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There are two possible approaches to the problem as formulated: direct
investigation of function (VII.O) and investigation of osculating motion. /268
We shall give both of these approaches, beginning with the latter.

And so, let us determine the extremum positions of a satellite, taking

as an example the initial value ug = 0 and expressing the parameters ¢q and k

in terms of the elements of the osculating ellipse e and w by means of the
relationships

q=¢e¢cosw, k==¢shnow.

The apogee and perigee positions are determined by the conditions w = u (the
satellite located at the osculating perigee) and w + m = u (the satellite
located at the osculating apogee), since the equalities

ecos(w+m) = —g(y) and esin(w +7m)=—km)).

are true for the vector which is anticollinear to the Laplace vector. For the
first of these conditions, equations (VI.1l) of Appendix VI will take the form
(u, = 0)

0

a, cos®u — (y +@;)cosU +8; —a, = 0; }

asin®u + (v = 1) sinu - 0. (VII.2)

Here, account is taken of the fact that b2 = a. according to (VI.2), e < O,

2
and the notation y = e/|e| is used.

In the case of the second of the conditions written above, equations
(VI.1) are written in the form

3
@, cos®Uu --(a1 —y)cosu+al—az=0;}

az‘sin3u ~(l+vy,sinu=0. (VII.3)

From the second equation of (VII.2), we may immediately find the one root

H =17 (VII.4)
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The second value of the root u = 0 corresponds to the initial point where
e = 0, and is taken up separately below.

The remaining two roots of the second equation in (VII.2) are determined
from

1 2
Y =< —02+02 cos“ U,
2 (VII.5)

‘Solving the first equation in ( VII.2) and (VII.5) simultaneously, we get for
the remaining two roots of system (VII.2) the expression

which cannot be used since the modulus of this fraction is greater than unity /269
at any values of io.

Thus, the only extremum position in this case is determined by condition
(VII.4). After substitution of (VII.4) in the first equation of (VII.Z2), we
get the expression

e=2lel(a, -a,), (VII.6)

which may be used for determining the eccentricity of an osculating orbit at
1€ ‘nt u = W,

this eccentricity is a monotonic function, assuming at the ends of the
interval 0 < i < m/2 the values e = |e| and e = 1/2|e|, respectively. Con-

sequently, the eccentricity of an osculating orbit in this range never
vanishes.

Let us consider equation (VII.3) assuming condition u, = 0, and we

0
immediately find cne root of the second equation in (VII.3)

(the root u = 0, as was pointed out above, is considered separately); however,
this root should be thrown out since the quantity y must take on only negative
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values at u = 7 according to the first equation of (VII.3). The two extremum
positions in this case are determined only by the formula

a, —a
u-‘Ammos——l———E——,

- 1 VII.7
a-a, +5 ( 7)

which is obtained from the first equation in (VII.3) after eliminating the
function y by means of the equality

Y=4a, —a,cos?u ~ -12-,

obtained in turn from the second equation in (VII.3). -This same equality in
the form

e:lel(azsin%—-lz-) (VII.S8)

determines the magnitude of the eccentricity of an osculating orbit in the
apogee positions.

An investigation of formula (VII.8) assuming the conditions ,sin u] <1,
e > 0, shows that extremum positions are possible only in the range of
inclinations

60° < i, < 120°. (VII.9)

Let us now examine the positions of a satellite corresponding to the /270
values u = 2nn! , i.e. to the zero eccentricities of an osculating orbit of a
circular satellite. Above (see Appendix VI) it was shown that at the point
u = 27 we have from the left (in the neighborhood of -27) w = 3w/2, and from
the right (in the neighborhood of +2w) w = w/2. To the left of this point,
the satellite moves as if away from the perigee of the osculating orbit, i.e.

r' > 0, while to the right it moves as if toward the perigee, and r' < 0.
Consequently, a local maximum is reached at the points 2nw, and the apogee
position is passed.

According to (VII.4) and (VII.7), three more extremum positions will be
reached in range (VII.9) on 0 < u < 2w. Since these extrema must alternate,

! In all cases here n = 0, 1, 2,...
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we conclude that the apogee position is passed at the point u = w (just as at
points 2nw), and the perigee position is passed at points (VII.7).

Apart from the points u = 2nm , the eccentricity of the orbit is equal
to zero at the critical inclination iy = 90° * 19°57', as well as at the points
u= (2n + 1)w + 45°35'10"., It would seem in this regard that two more addi-
tional extremum points should be passed, however, this is not so in reality.
The position of the perigee points (VII.7) depends on the magnitude of the
initial inclination (in terms of the coefficients a, and a ), the perigee
points (VII.7) converging as iO decreases, and moving towa¥d the apogee point

u = 7. At the critical inclination, they are right on the value of the argu-
ment u = (2n + 1)m * 45°35'10", which may be checked out by computation from
formula (VII.7). Thus, the number of extremum points in range (VII.9) remains
unchanged!. Further convergence (at inclinations less than critical) is
accompanied by smoothing of the extrema determined by equalities (VII.4) and
(VII.7) (i.e. the local maximum at u = 7 becomes less pronounced). When

iO < 40°33', the extremum points disappear, and the satellite goes through

only three extremum positions on the interval O < u < 2w, the apogee point at
u = m being replaced by the perigee point. Thus, the number of extremum
positions of a circular satellite on the interval 0 < u < 27 at Uy = 0 is equal

to 3 or 5, depending on the initial inclination.

The given analysis is illustrated by graphs in Fig. 123 produced by /271
digital computer calculations.

Let us now examine the second approach to investigation of extremum
positions, based on examination of the necessary conditions t+ = 0.

This analysis is done for satellites close to circular (e, ™~ 0(g)}); the
concept of circular satellites stems from this condition as a Special case.
"c1 < write the formula for the focal radius (see §12, formula (12.80)), dis-
1o 2erding the effect of asymmetry of the Earth relative to equatorial density,

r_p —e — _ _ipﬂ‘ 3 .9. 5 .. 2: -
o =—€gPocos( B +wg—u) 5| gsin lp—1+ l—-Ism i, |cos( @+

7 . 9. sin? i
+uo-u)+~13sm igcos(@+3uy—~u)+ < 0 cosu — (VII.10)

—sin? iy cos2u; + L 5in2

5 uosinzisin(ﬁs—u)],

! The statements relative to the number of extremum points given in [92] are /270
inaccurate. This was pointed out to the author by Yu. G. Yevtushenko.
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where o =

el t

- (1=5cos’iy), tgwg=ko/qo-

The first component in the right-hand member of (VII.10) appears as a
of orbital ellipticity. The remaining terms in (VII.10) are due
to the effect of asymmetry of the gravitational field of the Earth.
mine the values of the argument of latitude corresponding to the extremum
positions, let us differentiate (VII.1l0) with respect to u, and after setting
the resultant expression equal to zero we get

consequence

A1or | e sin(® —u) - & Lsin2isin(® —u) —
By ou = o sin(® +u g —u) 2[12 sin® isin(® +3u, —u)
Sinzio . 1 .. 93 -—
-—3 sm2u-§-sm2uosm igcos(@~u) +

Tyham.
5664

6660

6655

6657

The last two

+ (1-— %sin2 io)sin(B +U - u)]+0(32 ).

To deter-

(VII.11)

As may be seen from this expression,
the nature of the variation in the

focal radius and the extremum positions
of the satellite depend on the initial
value of the argument of latitude, the
angles iO’ wo,'m, the inclination of

the orbit, the focal parameter and the
initial eccentricity of the orbit.
Since this relationship in the general
case is complex, we shall 1imit our-
selves as in the preceding analysis to
consideration of some special cases.

We shall disregard the change in
angle w. Since w(t) is a slowly
changing function, this simplification
is permissible over a short time inter-

val.
b0 80 00 120 10 10 180 Let us assume UJO = O = 0; then,
Fig. 123 solving (VII.1l1), we find the four
roots
Yesi 2 in~3g =
By =0; Wy=m; Uy, = Arccos o 0T 227 08 (VII.12)

2e sin’ i,

roots take place if the inequalities
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- 2.
—1< 2 e sin 110#?‘0—3_?

<1
. 2. L4
2

€ sin 10

are simultaneously fulfilled. These inequalities are equivalent to

3e
- 340 Lgin2i
2e,<—s; At 3, <sintlg. (VII.13)

In the special case of circular satellites, we get formulas (VII.7) and (VII.9)
from (VII.12) and (VII.13). 1If the eccentricity and orbital position are such
that conditions (VII.13} are not satisfied, then three extremum positions
exist: the perigee position at u = 0, 27, and the apogee position at u = 7.

If conditions (VII.1l3) are satisfied, then two more exXtremum positions u, and

u, appear. It may be shown that a local minimum of the focal radius is
reached at these points. Thus, the satellite has perigee positions here.

The region of possible inclinations where the focal radius has four
extremum positions depends on the value of the initial eccentricity. This
region is a minimum when ey = 0:

120°> 1> 60°.

As the eccentricity increases, this region expands. When the initial eccentri-
city is close to -¢/2, five extremum positions will take place at any incli-
nations not equal to zero.

Shown in Fig. 124 is the variation in the focal radius for equatorial
and polar satellites at kO =0, Py = 6,996 km and

/273

- e = 0.0001. 1In the case of an equatorial satellite,
zo z'

i the second condition of (VII.13) is violated, and

% L0? therefore, it passes through three extremum positions.

In the case of a polar satellite, two more extremum

” positions are added to u = 126° and u = 234°.

8

. A variation in the initial position of the line

; of aspides changes the behavior of the relationship
0 PR r(u). If it is assumed that uj = 0, wy = 7/2, the:.
Fi 124 we find from (VII.11) that the extremum positions
g- take place at u = 7/2 and u = 37/2, and

276



. 2esin?i, ~6€, -3¢
U = Arcsin 9 0 .

o 202 .
Zesin” 1, (VII.14)

And the values of the argument of latitude corresponding to the extremum
positions are realized only if

. 22
2esin“ 1, —6¢,—3¢
-1< 0 0 <1.
.2
2 esin L

The given analysis shows that in the case of the orbits of satellites
which are close to circular, just as in the case of circular orbits, there
are regions in which five extremum positions are passed. In both cases, the
number of extremum positions on the orbits and the values of the argument of /274
latitude corresponding to them depend on the initial orbital parameters.

VI, ANALYSIS OF THE PERTURBATIONS OF ORBITAL ELEMENTS
OVER A LONG TIME INTERVAL

Let us undertake a qualitative analysis of disturbed satellite motion.
We shall use the approximate solution derived in §12. Our principal attention
will he devoted to studying the singularities of the evolution of Keplerian
motion over a long time interval, and to an investigation of the effect of
equatorial oblateness of the Earth.

. .. - -1
Let us introduce the dimensionless quantities: P = P+P "~ --the
-3 ~
focal parameter, T =tV 904 ~-- the time of motion, and B =
3
= (1.&@2)/2 5“% --the mean angular velocity.

We shall conduct our investigation over the long time interval x ~j3—1f-1
(where ¢ = -e), where the satellite makes ~x !fi"l revolutions about the
Earth, i.e. for nearly circular orbits of the order of 100 revolutions close
to the Earth, and for 24-hour orbits of the order of 3,000 revolutions.

Let us write the approximate formulas for calculating motion of the
satellite

T 7 : s =
Q:QD——?nocoslo, I=i,, p=1;
g=¢jcosw, k= €y Sinw; (VIII.1)

K ~ );A-l/ 3 : - - g
l.=LO+T[%O+e+§)%3Ro(l—35m2uosuﬁloﬂ,
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% , k :
where w=8Tro,, 9=_g__(5¢os230._1), tgmo—:a_g, RO=1+qocosu0+kosmuo.
The zero subscript indicates the initial values of the functionms.

The angle L is related to the argument of latitude and the true anomaly
M by the expressions

+0; (VIII.2)

Lz‘Zarctg\f 1—e gsinld — —kcosy v1 14 (qsméd-—}"cosu)

1+e e+QCosu+ksxnu 1+QCosu +ksmu
L=M+ﬁ)- (VIII.S)

Solution (VIII.1) approx1mates the exact solution of the problem of
satellite motion with error O(kifl ) In the following discussion, we shall
call (VIII.1) a first-approximation solution. The approximate solution
describes the average effect of disturbances for a large number of satellite
revolutions. The more exact solution, which reflects the singularities of
disturbances over the extent of each revolution taken individually, gives a /275
second-approximation solution. -

It follows from (VIII.1) that in the first approximation (i.e. with
error 0(x)) the orbital eccentricity, focal parameter and inclination remain
constant. Flattening of the Earth causes rotation of the line of aspides in
the plane of the orbit with a constant angular velocity 6. At inclination

equal to i = ia = 63.4°, the line of apsides does not change its angular

position with respect to the line of nodes. If the orbital inclination is
less than 16, then 6 > 0 and the angular distance of the perigee from the
line of nodes increases. At inclinations greater than i*, the angular dis-
tance w decreases.

For near-circular satellites whose initial eccentricity has the order of
oblateness, the components q, k of the Laplace vector, according to (VIII.1),
will remain quantities of the first negative order of magnitude throughout
the entire interval of motion, and therefore, they may be considered constant
in the first approximation. In this case, we cannot discuss the behavior of
the line of apsides on the basis of formulas (VIII.1),. The nature of the
variation in the angular position of the perigee may be studied only with
the aid of second-approximation formulas which accourt for short-period dis-
turbances in the orbital elements.

It is apparent from the first equation of (VIII.1l) that the line of
apsides rotates under the effect of flattening of the Earth at constant
angular velocity with respect to the polar axis of the Earth. The speed of
rotation of the line of nodes is considerably dependent on orbital inclina-
tion (we have already pointed this out in §8). For equatorial orbits (i = 0),
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the line of nodes rotates at a maximum angular velocity equal to Kﬁo/z,
while for polar satellites, the line of nodes is stationary.
The angular rotational velocity of the mean anomaly in disturbed motion
decreases or increases as a function of the sign of the difference 1 - 3
. 2 .2 .
sin” u, sin~ i,.

For satellites close to the Earth (with orbital radii of 6,500 - 7,000
km), the rate of change in the quantities 2, w, M may reach 5° per day as
a consequence of flattening. An increéase in the orbital radius causes a
reduction in the disturbing effects.

Let us find an expression for the draconic (nodal) period. Let us
assume that the satellite is on the line of nodes (u = 0) at some time 7.
If T1 is the draconic period, then the satellite again intersects the line
of nodes at Ty + T1 (u = 360°). From the last formula of (VIII.1l), we find

the expression for the change in the angle L in time le

%
- fio . 9
L('co-t-_Tl)—L('co)le[n0+9+n——~20 RZ(I—-B sin?u, Sm2lo)]. (VIII.4)

Let us transform (VIII.2) to the form

(VIII.5)

2 .
L = 231’C[g i_*etg E_"‘_U) _e_\/_ lf ‘Z, sxn(u—w) .
y1+e

2 1t+e cos (U—w)

According to (VIII.1), the change in angle w over period Tl will be a small

quantity of order x. Therefore, expanding (VIII.5) in a series with respect
to Kk we get

L(TO+T1)"L('E0) :2ﬂ+%l=0 9T1+_0(x2).

(VIII.6)
Differentiating (VIII.S5) with respect to w, we find
oL 2y
o= -1 1) (VIII.7)
®/u=0 (1+€ cos )
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Let us substitute (VIII.7) in (VIII.6). Then equating the right-hand
members of (VIII.4) and (VIII.6), we get an expression for the draconic
period

3
* on (% Rg(l—-?:sinz.uo §in2 10)— (1-—-:":2)/2 (5 cors2 iO -1)
=="179 + . (VIII.8)

- eg 2(1+ ¢ cos w)?

For orbits with low eccentricity, e ~ 0(k} we get from (VIII.8) a formula
which was found previously in [89]:

9 . . .
T1=T0{]—%;[]+5COS 10—6sm2u08m210]}, (VIII.9)

where T0 = 2n/fig is the period of Keplerian motion.

The length of the draconic period depends on orbital inclination, the
initial value of U, and the position of the line of apsides. The initial

value of the argument of latitude has a considerable effect on the length of
the draconic period, particularly at large orbital inclinations.

Shown in Fig. 125 is the difference between the initial (undisturbed)
period of orbital motion and the disturbed draconic period for a circular
satellite with a radius equal to the
equatorial radius of the Earth as a func-
Tmeq tion of iy
20
For polar orbits, the draconic period

" may change by 25 seconds, depending on

0 w L Uy An examination of Fig, 125 shows that
3" a combination of values io, U, exists /277
_1” —_———
Uy-60° such that for this combination the period
20 U -50* Ty is equal to the disturbed draconic

period T. For near-circular satellites,

Fig. 125 this takes place when

5 1
g = =+ —5 (VIII.10)
sin 10

2

sin
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Equality (VIII.10) becomes significant when

9. 6 .
sin lozﬁ"' (VIII.11)

The regions of values of i, as a function of u, where the draconic period T

0 0 1
is less than, equal to or greater than the undisturbed period TO for near-
circular orbits are shown in Fig. 126.

It follows from formula (VIII.S8)
iy that if the satellite was on the line of
g nodes at the initial instant, then the
v undisturbed period is greater than the
draconic period when
@ T
3 2
2R, (1+e cos w) .
& =0 5 > 1-5cos?i.
= 7T, (1"33) 2 (VIII.12)
x*
N For inclinations smaller than i¥ =

i @ & & et ARG 0
= 63.4°, the right-hand member of
(VIII.12) is negative, and therefore,

Fig. 126 the inequality takes place at any

eccentricities. Thus, if ug = 0 and

iO < is, then the draconic period is

less than the Keplerian period. However, for orbits close to polar, the
draconic period may be greater than the Keplerian period. In particular, if
the secular change in w is disregarded (which is a permissible simplification
over long time periods), and it is assumed that w = wy = 7, then we find from
(VIII.8) that the draconic period is greater than the Keplerian period for
polar orbits when

3 %
Ro < (1—e?) 7

-2 " 20-e? (VIII.13)
Let us solve (VIII.13). Assuming that RO =1 - ey We get
e> 0,242, (VIII.14)
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In the course of time, the line of apsides changes its position, which leads
to a change in condition (VIII.14). In particular, for the case w = mw,
w =0, i = 90°, the draconic period is greater than the Keplerian if e > 0.6.

Thus, over a long interval of motion, it may turn out that the Keplerian
period of motion was originally less than the draconic, and then due to
evolution of the orbit, the draconic period becomes greater than the initial /278
undisturbed period. If the period of motion of the satellite is equal to or
close to 12 or 24 hours, then resonance effects appear due to the ellipticity
of the equator. In the first approximation, the resonance effects show up in
a change of solution L(t).

Let us examine the motion of a satellite around the Earth with a period
close to 24 hours in an orbit of low eccentricity e3 ~ 0(k).

Let us use the symbol o to denote the angle between the mean longitude
of the satellite, equal to L + @, and the longitude of the semiminor axis of
the equatorial ellipse:

T -
o= 5 +L-—Q-—m3"c:

where w4 is the dimensionless angular rotational velocity of the Earth around

the polar axis, related to the dimensional angular velocity by the formula

1 3
- 4. %
(,03 o= w3y, zpoz .

The angle o satsifies the equation (see §12)

é__.-_- — -Si-z—b <1-— '1zé € 2> [9323111218”1(2 d."'2(.0)+2(1+003 i)zsinZa]. (VI II. 15)

2a
d=? 8

Equation (12.28) describes appreciably nonlinear oscillations or rotations of
the mean longitude of the satellite relative to the semiminor axis of the
equatorial ellipse. Low-amplitude resonance oscillations were studied in [90]
and [91] for the case of near-circular orbits with low inclination. Oscil-
lations of an equatorial satellite were studied in the nonlinear formulation
by Perkins [92]. The equations obtained in these works for the longitude of
the satellite are special cases of equation (VIII.1l1).
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For orbits of low eccentricity, when e2'~ 0(x), equation (12.28) is
simplified:

2 3x2b(1+ cosig)”
%_%z_ ( 0200 sin2a (VIII.16)
T

Let us use the symbol KF to denote the complete energy of the satellite:

NZ/ ~1/
2xF = ” —no" +2u(U-—U0),
where

~

U= —2—(1-3sin? ¢)+ £ [35sin? o~ D sin ¢ +3] +
673 207

ﬁ%;am2Aam2¢;
27

x I3 .
+~—f(5'sm2(p—-3)sm<p+
27 4
4 2.3 2
- 5C4oT [r'p 61
.p~1, 74070, 1T ro, 270 /o2 2
P=TePy s €= 5 g Cao="g ¢ D=5 5 Ve +dyy.
P To Py

Here,A is the longitude of the satellite reckoned from the major axis of the
equatorial ellipse. In the nonresonance case (when the period of orbital
motion is not equal to 12 or 24 hours), satellite motion takes place with
constant total energy with an accuracy to quantities of order ~kx. In the
resonance case, F satisfies the equation

I 2
dF _ _ % (1-— 1—1—2‘:——> [9¢2sin%isin(2a +20)+2(1+cosi)?sin 2a .

Setting the right-hand members of (VIII.16) equal to zero (for the case of
near-circular orbits e ~«k), we find that motion with constant energy (sta-
tionary resonance conditions) takes place only when a = 0, n/2, w, 37/2, i.e.
only in the case where the mean longitude of the satellite coincides with the
longitude of the semiminor or semimajor axes of the equatorial ellipse. It
follows from (VIII.15) that for large eccentricities (e3~ 0(x)), stationary
conditions exist only for orbits with an inclination close to 63.4° (since
only in this case is there no secular variation in the angle w, and the
equation (VIII.15) has zero solutions).

Let us investigate the stability of stationary resonance conditions.
We shall use the notation o, to denote any of the values of a which correspond
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to stationary resonance conditions. Setting up an equation in variations for
(VIII.15) and (VIII.1l6), we get

dzm ;
d=? 3x b (1 15 62){9e23m21ms(2a,—2m)+2( L+cosi)* cos 2a Joa = 0;
dd S;L 352 b(1+2cesl) - Ba-cos2x, =0,

The characteristic equations for (VIII.15) and (VIII.16) will be

2 15 -~ ‘p.-
22 3% 5 ( \}[% sin®icos(2a ~2 i (e cosiieas 22, 1=D; (VIII.17)
3’ b(l F uo:l 3t
Z <
2 . "0 —ens2s, =0. (VIII.18)

If equations (VIII.17), (VIII.18) have real roots, then conditions a, are

unstable; if the roots of (VIII.17) and (VIII.18) are imaginary, then the
stationary conditions will be stable. Corresponding to stable conditions on
the phase plane (o, o) are singular points of the focus type, unstable saddle
points. In the case of unstable conditions, the roots of (VIII.17) and
(VIII.18) are real and different, and therefore the angle o close to the sad-
dle point increases exponentially with a growth index proportional to «. In
the stable case, the angle o oscillates with respect to a = 0, m with a low
frequency proportional to K.

Thus, the satellite moves with a constant mean longitude relative to
the rotating Earth only in the case of stationary resonance orbits when its
mean longitude coincides with the directions of the equatorial axes. Orbits
in which the mean longitude coincides with that for the minor axis are stable,
while if the mean longitude coincides with that of the major equatorial axis,
then these orbits are unstable.

From the condition a = 0 (see 12.35), we find the value of the initial
mean angular velocity of motion of the satellite ﬁo where stationary condi-

tions are possible

fi, -'(53 —3cos?i o) = —&—i(l—3sm losm ug) +0(x2).

Let us find the analytical solution for equation (VIII.12). Multiply-
ing both members of (VIII.12) by da/dt and integrating, we get
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2 2
%(gﬁ) = 3"'Tb(l+oosi0)2cos 2a4c ;.
T (VIII.19)

Let &0 designate the initial angular velocity of the angle o at the instant
when the satellite is on the minor axis of the equatorial ellipse. Assuming

2
B2 2%
3%2b (14 cosig)® (VIII.20)
we rewrite (VIII.19) in the following form:
1 doc)z 3n2b( S N2 D2 o2
by === (l+cosiy)“(ké~sin®a).
2<&? * ’ (VIII.21)

Three types of motion are possible depending on the quantity k: k < 1,
k > 1 and k = 1.

~
N
[0.0]
—

|

1. k < 1. In this case, we set

-~

k=sina, . (VIII.22)

It follows from (VIII.21) that at the instant when o reaches o the angular

velocity & becomes zero, and the direction of motion of the anéle o reverses.
The angle o will oscillate between oy and -0y Integrating (VIII.21), we
find
T o= — 2 fav,_. do, .
”\/63(1+cos io) 0 ainzctl—-ssin:‘Z 3 (VIII.23)

Integral (VIII.23) is a complete elliptical integral of the first kind. By
means of the transformation sin a, sin ¢ = sin o, we reduce integral

(VII1.23) to the normal form:

v ~
2 f d F((P;k)-

¢ 2
':‘ — = -
% (l+cos io)\/sTo /l—i 2 in2 @ #{l+cos io)\/ 6b (VIII.24)
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Inversion of this relationship by means of the Jacobian elliptic function
sn{k,t) gives first

sin ¢ = sn(E, Eg—' Vv6b (1+cos io)) ,

from which it then follows that

o = arcsin Sinal-Sn(E,:c—zx véb (1+cosio))]. (VI11.25)

The period of oscillations of the angle o is determined by the equality

T._ 8Kdb
x(1+cos io)\/éb (VIII.26)

where K(k) is a complete elliptic integral of the first kind. If the initial
angular velocity o is small, then according to (VIII.20), the modulus of the
elliptic integral is small. In this case, the satellite makes small oscil-
lations (librations) relative to the minor axis of the equatorial ellipse.
Let us use the known expansion of the complete elliptic integral with respect
to the modulus. Then , from (VIII.26) we get the following formula for the
period of oscillations with low amplitude:

2
T. (1,3}
x(L+cosig)Veb \ 4 (VIII.27)

The period of the librations of angle a is inversely proportional to yx, and
therefore, is a large quantity. Consequently, the ellipticity of the equator
results in a long-period oscillation of the mean longitude of the satellite /282
relative to the minor equatorial axis. Returning to dimensional quantities,

we get from (VIII.26) the following formula for the period of the oscillations

with respect to the variable t:

4Kp;/’

af 2 2 ’
31y Vi Ve +dy,

T
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We compute the period of small oscillations from the formula

&
4
T - 2‘np02 .
3'0\/.}7 ‘/6222'{-‘122 (VIII.ZS)
If we assume 6ycZ +d? =103, then it follows from (VIII.28) that the
22 %22

period is equal to 855 days, or 2.3 years. The period increases with incli-
nation, and is twice as long for a polar orbit as for an equatorial orbit.
Shown in Fig. 127 is the relationship between T and the maximum amplitude of

oscillations in aq for equatorial and polar

satellites. The period of the librations

tends to « as ay approaches n/2.

2. k > 1. 1In this case, setting

2 i 2
kz - 3% b(1+coslo) (VIII.29)

2 ?
2&0

we represent equation (VIII.21) in the form

Fig. 127

2 g2
i‘(%%) =_£g1_ki sinZ «]. (VIII.30)

The quantity k., is less than unity, and consequently, the angular
velocity & is nowhere equal to zero. Therefore, instead of oscillating, the
angle o will rotate in one and the same direction.

Integrating (VIII.30), we get

[0 4
rc,._]'._ f A___,’
& 0 f1-k%sina (VITI.31)
1

Inverting integral (VIII.31l), we find
o =am &, 7T,

(VIII.32) /283

The period of rotation is determined by the equality
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1.2 da 2Kk

= [ =
% 0 \/1-kZsin’a ' %0 (VIII.33)

For large values of &0, (VIII.33) may be expanded in a series with respect
to k..
1

Dropping terms of order ki, we get

2
1,21
T- -(1’“ 4>' (VIII.34)

o8

If “0 > 0, then the angle a increases monotonically, and the satellite moves
in the westald direction relative to the equatorial ellipse. If oy < O,
then motion is constant with respect to direction. The semimajor axis of
the satellite's orbit is inversely proportional to its angular velocity, and
therefore, correspondlng to the case og > 0 are orbits with a shorter focal
radius than in the case oy < 0.

3. k = 1. Equation (VIII.21) in this case assumes the form

cos“ o,
d~

}_(é&) anb(1+cosi0)2 2
5 3 (VIII.34')

Integrating (VIII.34'), we get

T = 2 lnE?(%-+%E}
n(l+cosi0)\/6—l)_ (VIII.35)

This formula shows that as T increases from 0 to «~, the angle o will increase
monotonically from O to m. Thus, if the mean longitude of the satellite
conicided with that of the semiminor axis of the equatorial ellipse at the
initial instant of motion, then the reverse direction of the semiminor axis
will be the limiting position of a.

Shown in Fig. 128 is part of the phase plane for an equatorial satel-
lite. The angle o and angular velocity o are taken as the axes. The phase
trajectories a(t), a(t) are periodic with respect to a with period n/2. The
arrow indicates the direction of motion. The broken line is used as a
separatrix. The phase trajectories lying beneath the separatrix correspond
to the first case--oscillations about the stable position a = 0. The tra-
jectories lying above the separatrix are the second case--rotational motions.
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The separatrix corresponds to the third case of aperiodic motions.

The law of variation in the total
energy of the satellite may be found
from (12.14). 1In particular for near-
circular orbits we get

24—
- . b 2
Fal_ f%wa-"o-'#u
3xn°/° T

(1+cosiy)(1+2cosiy) —

1
” ~'h
xn . wit . 2
._._4'_0_(]_..5005210)—,——2-0-—(1—3sm2 ¥,ysin 10)]. (VIII.36)
The solutions of (VIII.25) and (VIII.32) should be substituted in the right-
hand member of ( VIII.36). It follows from (VIII.36) that the total energy
in the resonance case is a slowly varying periodic function of time.
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Appendices to Chapter Three /285

IX. EQUATIONS OF MOTION OF A CONTROLLED SPACE VEHICLE IN
THE FIELD OF THE SPHEROIDAL EARTH

In studying the motion of a controlled space vehicle close to the Earth,
the required degree of precision will be achieved when the gravitational
potential is written in the form of Model B. The equations of motion in
osculating elements with respect to the argument t in this case take the form

@u ~1sinll .
dt ‘/p—}IR sini ¥
di ~1 .
E?‘NﬁﬂlR cosuW;

d _
£~2\/pTLR pT;

s
g‘?‘ —VPule R ctgisinuWe[(g+cosu)R  +cosul T—sinuS }; (IX.1)
% =Pid—qctg iR sinu W+ [(k+sin WR Lisinul T +cosuS §;
% VPa(p~2R? ~R™ ' cigi sinuW).
J

Here R = 1 + q cos u + k sin u;

6=3C,12/p2; S = 5 ep?R4(Isin?isin?u~1)-5";

T= L ep™®R*sinisin2u+ T*; W = & ep™*R* sin 2isinu+¥ *;
ST, T u¥W"
are, respectively equal to

S‘—’-ar s T*“a':/‘r‘; W"a,,/ﬂ'}

where a., a and a, are the projections of the controlling or correcting

acceleration on the focal radius, the transversal and the positive normal to /286
the plane of motion. System (IX.1l) may be used for describing the motion of
an artificial Earth satellite with regard to other perturbing effects than
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the first-order polar oblateness of the Earth. Then, the components of the
corresponding effects are written as S*, T* and W¥*.

This same system of equations may be written with respect to the argu-
ment of latitude u:

. P2 3 »
= eRcosisin?u+ ——R ™ sinul} *;

sinl

= %eR'sinZi'sinZu +p2R'—300‘suW *;

= &R sin? isin 2u +2p3R_3 T,

H

= B 28

Fe

- %— eR{2kcos? isin? u+(q+cosu+Rcosu) sin isin 2u —

—~R(3sin%isin? u-1)sinu}+ Vpuik sinuctgiR1¥" + > (1X.2)
+[R“1(q +cosu) +cosUlT* +S*sinu};

Sy

f% = %‘ eR{~2g cos?isin?u + (k +sink + R sinu) sin i sin 21 +

+R(3 sin?isin?u~1) cosut}+ i i~g sinucigiR™1W" +
+[(k +sinu)R™1 4 sinu] T* ~S* cosul;

dt_ - ﬁpz_ \/g[l+eRoos2 isin®u+p2 R—3 ctgisinuW’ 1.

t
du

X. ON THE METHOD OF AVERAGING SYSTEMS WITH A RAPIDLY ROTATING PHASE

The asymptotic methods of the theory of differential equations (methods
of averaging) are an effective tool for solving a number of problems in non-
linear mechanics. The method of averaging consists of using special sub-
stitution of variables to reduce complex systems of differential equations to
simpler averaged systems. The method of averaging has been strictly formu-
lated and substantiated by N. M. Krylov and N. N. Bogolyubov. The method has
been further developed and generalized in works by Yu. A. Mitropol'skiy,

V. M. Volosov and a number of other authors [64 - 67].

Let us briefly outline V. M. Volosov's method of averaging, which is a /287
generalization of the procedure given by N. N. Bogolyubov and D. N. Zubarev
[65] for averaging systems with a rapidly rotating phase.

Let there be a system of the form

=X (5, )+f Xy, y)+e® oo (X.1)
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§ =nereY, 5N+ Y, (5,046 oon )

wi..re € is a small parameter (e < 1); X, Xl, X2"" are m-dimensional vector

functions x = {xl,..., xm}, X1 = {Xll""’ le}, X2 = {X21,..., X2m} e
Y Yl, Yz,... are k-dimensional vector functions. To simplify the computa-
tions, we shall set k = 2. We shall assume that the vector n = {nl, n2} is

constant. In [67], the more general case is considered where n depends on X,
y, t. The functions Xl’ X2, Yl, YZ"" are periodic with respect to y with

periods 2m. The right-hand members of the equations of system (X.1) are
proportional to the small parameter e, and therefore, variables x are slowly
changing functions. The variables change comparatively more rapidly since
Yy~ n>>c¢g,

We shall attempt with the aid of special substitution of variables to
reduce system (X.1), (X.2) to a simpler system in which the rapidly and
slowly changing variables would be separated. We shall seek the substitution
of variables in the form

X xf-reyl(f,y)+e2uz(x_,’i)+ ...+elul(f,-)7)+ e

Y=Y+ (£,7)+e20, (5,7 )+ .cotefv (£,7)+ ..., (X.3)
where ul, Uysee are m~-dimensional and Vl’ Vosene are k-dimensional as yet
undefined vector functions. We shall consider functions ul, Uy s Vl’ Voo

periodic with respect to y with periods 2ff. After the substitution of vari-
ables (X.3) the system is reduced to the averaged form

»]a

(X.4)

1

-n+eBl(f)+5232(f)+es....

e

= 8A1(3)+82A2(f)+53...; }

The functions Al’ A2, Bl’ B2 will be defined below. System (X.4) is consider-

ably simpler than the initial system (X.1), (X.2), since the equations for

rapidly changing variables x and slowly changing variables y are separated

in (X.4). Therefore, the equations with respect to x may be integrated
independently of the last equations in this system. After this, finding the
solution of y(t) reduces to computing a quadrature. Substitution (X.3) may

be interpreted as expansion of the real solution of system (X.1), (X.2) into /288

IThis must be a misprint and should read: "... variables y change...".
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the averaged solution X, y and the short-period solution described by ul(y),

uz(y), vl(y),... Differentiating (X.3) on the strength of (X.4), we get
s - u
I= BAI(I)-i-sg':Ln-f-ez?ngl +e%}A1 +526—}£_1A2 +oeee
ay ay ox 0% (X.5)
Here /0% denotes the differential tor: =42, .., 21
ere x denotes the differential operator: == 2%, 9%, ¥
€ .
Therefore expression fi; when written out in more detall has the form
ax
auy au au E
A=A S A e AL
ox 1T %, 7117 5%, 2%t oE Bm

The remaining expressions in (X.5) may be similarly expanded. Let us sub-
stitute (X.5) in (X.1), (X.2) and expand the functions Xl(i} ), Xz(i) y),

Yl(i} y),... in a series in powers of €. Then equating the coefficients

associated with identical powers of €, we get the infinite system of
equations

n=X(Z3); B (®+ 25V ) iy a; )

(X.6)

LY (5Y) aY , (%,¥)

— 1(?,? Y+
ax

Solving system (X.6) we sequentially determine the functions Al’ Bl’ u
Vis Ugseess after which the problem of integrating system (X.1), (X.2)

1,

reduces to integration of (X.4). Finding the solution of (X.4), we get an
approximate solution of the initial problem from (X.3).
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As will be shown below, determination of the sequence of functions Al’

Bl, Uy Viseoo presents no difficulties in principle, but in view of the
rapid complication of equations (X.6), it is usually possible only to con-
struct the first few functions A, B., u_ , v.,... Therefore, the problem
12 717 71 1
of convergence of series (X.3) when the number of terms increases without
bound is not considered in the method of asymptotic integration. However,
the approximate solution consisting of 7 terms of series ( X.3) has an
asymptotic property: for sufficiently small e, it approximates the exact

solution of system (X.1), (X.2) with errorNeZ+1 on the time interval t “’e_l

Let us go on to solution of the system (X.6). We expand the functions
XI(K} ), Yl(i} ¥),... and the unknown functions-ul(i) 2 vl(f} ¥),. i

double Fourier series. Writing them out in complex form, we get

oo (&,5) e 1
Xl-k-z X, exp(iky;+isy,);
S0

oo (k) Sy s e
Y, = 2 Y, expliky, +is¥,);
}C,Sn—oo r
- E, L X.7)
1= g S)eqﬂlkyl+lsy2);

k,s-.—oo )y

i

o0 (k’ ) 'R Noul o -
vV,= I Vv, y exp(iky, +is¥,),

k,s--no

Here X(lk‘s), Y(lk'S), u(lk'S), v(lk’s) . are coefficients of the Fourier series

for the functions X Yl’ vy in particular,

1’ Uy

) 2n 2m
X0 e LT T X E e

~ikY, +57,) .. .
an? § ¢ 1 1drs

The complex exponentlal form of the Fourier series (X.7) is equivalent to the
ordinary expansion in sines and cosines. Let us substitute expansion X.7)
in the first and second equations of system (X.6). Equating the coefficients
associated with identical harmonics, we get

27
Ap(x) = of (E5,,7,)45, 45, ; (X.8)

Og.,,w

4-7:
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B.(% 1 27 27 —_—— —_— (X.9) —-/290
l(x) "4_7:2' (_)f 6[ Yl(x’y13Y2)dy1dy2;

(k,s) R X.10
X s -1(n1k+nzs)u(1k’s); ( )
(k,s) .
Y, s =z(n1k+n23)v{"'s). (X.11)

Formulas (X.8) and (X.9) determine the functions Al(i), Bl(i). If frequencies

n1 and n2 are noncommensurate, i.e. if

n. R +n 0
1% +B,S £ (X.12)

for all integers m, n are unidentical to zero simultaneously, then the
Fourier coefficients of the functions ul, v, may be found from (X.10) and

(X.11). The functions u;, vy are determined with accuracy to an arbitrary

constant.

In order to eliminate this ambiguity, additional requirements must be

imposed on the functions Ups Vi, €.8. the requirement that Uy and v, must

equal zero at the initial instant of motion, or requirement of absence of the
first harmonic with respect to y. The given selection of an additional con-
dition has no effect on the accuracy of the approximate solution.

Let us require the functions ul(i} y), vl(i} y) to contain no zeroth

harmonic with respect to y, in other words, we shall define these functions
so that the equalities

2T 27 _ 27 27
[T uny)dy,dy, =0; [ [ v (F,7)dy,d5,=0. (X.13)
6 o 0 0 2

are satisfied.

Let us expand functions X,, Y, in Fourier series and substitute the

2’ 72
series in the second and third equations of system (X.7). We shall use
solutions (X.8) - (X.1l1l). Equating the coefficients associated with identical

harmonics, we find
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mX(XGY)  __ . aX(%, B

E{ #— RN k—‘—y)vl(x.y)+x;x,ygld?1d72:

L (X.13')

lov, @9 __ st GEH I
o ul( 9+ ‘_a"_y__" ~— Ul(x,)’)i-Y;('-f.y) dyl dy2n

Continuing the process of successive determination of the functions we need,
we may construct a solution of system (X.6) in any approximation under
condition (X.12). We call the approximate solution x(t), y(t) a first-
approximation solution if the resultant error has an order of~ e on time
interval t ~e~1l. To construct a first-approximation system, it is suf-

ficient to integrate the averaged system

f=cA (T);
5 = n+eB, (%) (X 14)
with initial data
=0 x=x; Y=y, (X.14")

and to set x = X, y = y.

The second-approximation solution approaches the exact solution of -1
system (X.1), (X.2) with an error of the order of e? on the interval t ~ ¢
To get the second approximation, it is necessary to find the functions U,

vy, Al’ Bl’ A2, 32 and to solve the system

e

= A (F)+e2A, (T ); }

;=n+eBl(f)+esz(f). (X.14'")

If requirement (X.13) is imposed on functions Uy, Vs then the initial con-

ditions for (X.14) will take the form

ta0; FT=xg—eU;(xg,¥e); Y=Yy —sV, (X5,¥0)-

The solution of system (X.14") may be simplified if we seek the solution in
the form
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¥wE i +eny;
(X.15)

y-gz+en2, :

2 and

where &l, 52 are the solutions of system (X.14) for X and ;} respectively.
Let us substitute (X.15) in (X.14") and expand the left-hand and right-
Dropping terms of order e

hand members in a series with respect to «.
higher, we get a system for Nys Myt

Ny = € —=
1 2x

. 0B
Ny = eb—f_ln1+eBz(E_,1).

A
: (X.16)

reduces to solving a linear

Thus, finding the unknown functions ny and n,

nonhomogeneous system of differential equations
then Ny and n, are found with the aid of

If 94, [9X = 3B, /a%=0, ,
quadratures:
n, = e [A,(E,)dt; /292
Returning to the original variables, we get a final solution for the problem
in the second approximation:
I= €1+9n1+eu1(€1,€2)§
¥y - 52+en2+evl(€1,€2).
We shall say that resonance takes place if frequencies n, and n, are commen-
surate. In this case, there also exist integral mutually simple numbers k
and s such that the difference
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kn, —sn, =0(e).

In the resonance case, condition (X.13) is violated. Functions U, vl may

not be determined from system (X.6).

For calculating resonance conditions, let us introduce the new variable
z--phase shift:

- k"‘ S.
Z=Y1k 7y (X.17)

Eliminating the rapidly changing variable Yy from system (X.1), (X.2) by
formula (X.17), we get the system

= 5X1(xvz:y2 )+ 82X2(1»Z,'72 Y4 eee;
- nlk—-nzs+ekYu(x, Z,¥5)—eSY (X, Y5, D)4 o (X.18)

o=y +eY ,(5,2,¥,)+ «on ©

e De e

System (X.18) again has the standard form. In this system, X and z are
slowly changing variables while Yo is a rapidly changing variable. If the
functions Xl’ Yl"" depend on time (nonautonomous system), then by intro-
ducing the new variable W which satisfies the equation W= 1, and substitut-
ing W for time t in the functions Xl’ Yl""’ we again reduce the system to

standard form (X.1), (X.2).

Applying now the system of computation outlined above, we solve the
problem of asymptotic integration of system (X.1), (X.2).

A more detailed exposition of the averaging method and a strict valida-
tion may be found in [64 - 67].
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